18 resultados para Africa, North

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOx reductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Satellite data are used to quantify and examine the bias in the outgoing long-wave (LW) radiation over North Africa during May–July simulated by a range of climate models and the Met Office global numerical weather prediction (NWP) model. Simulations from an ensemble-mean of multiple climate models overestimate outgoing clear-sky long-wave radiation (LWc) by more than 20 W m−2 relative to observations from Clouds and the Earth's Radiant Energy System (CERES) for May–July 2000 over parts of the west Sahara, and by 9 W m−2 for the North Africa region (20°W–30°E, 10–40°N). Experiments with the atmosphere-only version of the High-resolution Hadley Centre Global Environment Model (HiGEM), suggest that including mineral dust radiative effects removes this bias. Furthermore, only by reducing surface temperature and emissivity by unrealistic amounts is it possible to explain the magnitude of the bias. Comparing simulations from the Met Office NWP model with satellite observations from Geostationary Earth Radiation Budget (GERB) instruments suggests that the model overestimates the LW by 20–40 W m−2 during North African summer. The bias declines over the period 2003–2008, although this is likely to relate to improvements in the model and inhomogeneity in the satellite time series. The bias in LWc coincides with high aerosol dust loading estimated from the Ozone Monitoring Instrument (OMI), including during the GERBILS field campaign (18–28 June 2007) where model overestimates in LWc greater than 20 W m−2 and OMI-estimated aerosol optical depth (AOD) greater than 0.8 are concurrent around 20°N, 0–20°W. A model-minus-GERB LW bias of around 30 W m−2 coincides with high AOD during the period 18–21 June 2007, although differences in cloud cover also impact the model–GERB differences. Copyright © Royal Meteorological Society and Crown Copyright, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is growing evidence that the interocean exchange south of Africa is an important link in the global overturning circulation of the ocean, the so‐called ocean conveyer belt. At this location, warm and salty Indian Ocean waters enter the South Atlantic and are pulled by currents that eventually reach the North Atlantic, where water cools and sinks. A major contributor to the exchange is the frequent shedding of ring eddies from the termination of the Agulhas Current south of the tip of Africa. This shedding is controlled by developments far upstream in the Indian Ocean, and variations in this ‘Agulhas Leakage’ can lead to changes in the rate and stability of the Atlantic overturning, with possible associated global climate variations [Weijer et al., 1999]. Regional climate variations in the tropical and subtropical Indian Ocean are known to affect the whole system of the Agulhas Current, including the interocean exchanges. This article reports on some of the seminal results of ongoing multinational, multidisciplinary projects that explore these issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the nature of recent (50 year) rainfall variability in the summer rainfall zone, South Africa, and how variability is recognised and responded to on the ground by farmers. Using daily rainfall data and self-organising mapping (SOM) we identify 12 internally homogeneous rainfall regions displaying differing parameters of precipitation change. Three regions, characterised by changing onset and timing of rains, rainfall frequencies and intensities, in Limpopo, North West and KwaZulu Natal provinces, were selected to investigate farmer perceptions of, and responses to, rainfall parameter changes. Village and household level analyses demonstrate that the trends and variabilities in precipitation parameters differentiated by the SOM analysis were clearly recognised by people living in the areas in which they occurred. A range of specific coping and adaptation strategies are employed by farmers to respond to climate shifts, some generic across regions and some facilitated by specific local factors. The study has begun to understand the complexity of coping and adaptation, and the factors that influence the decisions that are taken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within development communication, gaps remain in theory and practice: communication innovations are taking place which either do not incorporate theory or fail to challenge the assumptions of development communication and HIV/AIDS theory. This can lead to the implementation of unsuccessful interventions that lack theoretical frameworks or to uninformed practice, making it difficult to replicate. Further, research has demonstrated that Entertainment Education (EE) interventions have a measurable impact on behaviour in areas such as HIV/AIDS prevention. Given the transitions in EE practice and evidence of its impact, EE theory and practice can contribute insight into these challenges. A pilot study investigated these dilemmas within the context of the monitoring and evaluation of development communication. Framing this discussion is the concept of South-North dialogue, using comparative analysis of EE interventions to distil lessons through contrasting experiences in two diverse settings. It holds as a principle that lessons from the experience of EE in the Southern context can inform lessons for the North. Further, comparison of the case studies can generate insights for the broader development communication field. We present four case studies, informed by key informant interviews, of EE interventions in the UK and South Africa. We address how communication is defined in planning, implementation and evaluation, highlighting how it often misses the importance of 'listening'. The case studies show that HIV/AIDS communication, and development communication more broadly, has not internalised ideas of evaluation and listening in communication. Successes in the case studies can be partially attributed to responsiveness and context-specificity rather than following rigid planning templates, such as those found in some development communication literature. This indicates the importance of flexibility and responsiveness to context for both development communication and HIV/AIDS communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BIOME 6000 is an international project to map vegetation globally at mid-Holocene (6000 14C yr bp) and last glacial maximum (LGM, 18,000 14C yr bp), with a view to evaluating coupled climate-biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site-based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present-day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south-western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial-interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now-arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land-surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere-biosphere models. The data could also be objectively generalized to yield realistic gridded land-surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation-climate feedbacks have focused on the hypothesized positive feedback effects of climate-induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid-Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We ran a sequence of climate model experiments for 6000 years ago, with land-surface conditions based on a realistic map of palaeovegetation, lakes and wetlands, to quantify the effects of land-surface feedbacks in the Saharan region. Vegetation-induced albedo and moisture flux changes produced year-round warming, forced the monsoon to 17°–25°N two months earlier, and shifted the precipitation belt ≈300 km northwards compared to the effects of orbital forcing alone. The addition of lakes and wetlands produced localised changes in evaporation and precipitation, but caused no further extension of the monsoon belt. Diagnostic analyses with biome and continental hydrology models showed that the combined land-surface feedbacks, although substantial, could neither maintain grassland as far north as observed (≈26°N) nor maintain Lake “MegaChad” (330,000 km²).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information on the breeding biology of the White-headed Vulture Trigonoceps occipitalis is limited and published data are few. Within the Kruger National Park in north-east South Africa there is a regionally important population of about 60 White-headed Vulture pairs, of which 22 pairs were monitored for five years between 2008 and 2012 to determine key aspects of their breeding biology. Across 73 pair/years the mean productivity of 55 breeding attempts was 0.69 chicks per pair. Median egg-laying date across all of the Kruger National Park was 27 June, but northern nests were approximately 30 d later than southern nests. Mean (SD) nearest-neighbour distance was 9 976  7 965 m and inter-nest distances ranged from 1 400 m to more than 20 km, but this did not differ significantly between habitat types. Breeding productivity did not differ significantly between habitat types. The results presented here are the first for this species in Kruger National Park and provide details against which future comparisons can be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LMD AGCM was iteratively coupled to the global BIOME1 model in order to explore the role of vegetation-climate interactions in response to mid-Holocene (6000 y BP) orbital forcing. The sea-surface temperature and sea-ice distribution used were present-day and CO2 concentration was pre-industrial. The land surface was initially prescribed with present-day vegetation. Initial climate “anomalies” (differences between AGCM results for 6000 y BP and control) were used to drive BIOME1; the simulated vegetation was provided to a further AGCM run, and so on. Results after five iterations were compared to the initial results in order to identify vegetation feedbacks. These were centred on regions showing strong initial responses. The orbitally induced high-latitude summer warming, and the intensification and extension of Northern Hemisphere tropical monsoons, were both amplified by vegetation feedbacks. Vegetation feedbacks were smaller than the initial orbital effects for most regions and seasons, but in West Africa the summer precipitation increase more than doubled in response to changes in vegetation. In the last iteration, global tundra area was reduced by 25% and the southern limit of the Sahara desert was shifted 2.5 °N north (to 18 °N) relative to today. These results were compared with 6000 y BP observational data recording forest-tundra boundary changes in northern Eurasia and savana-desert boundary changes in northern Africa. Although the inclusion of vegetation feedbacks improved the qualitative agreement between the model results and the data, the simulated changes were still insufficient, perhaps due to the lack of ocean-surface feedbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of anthropogenic climate change can be improved by recognising the seasonality in the climate change response. This is demonstrated for the North Atlantic jet (zonal wind at 850 hPa, U850) and European precipitation responses projected by the CMIP5 climate models. The U850 future response is characterised by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November-April, and a poleward shift in May-October. Under the RCP8.5 scenario, the multi-model mean response in U850 in these two extended seasonal means emerges by 2035-2040 for the lower--latitude features and by 2050-2070 for the higher--latitude features, relative to the 1960-1990 climate. This is 5-15 years earlier than when evaluated in the traditional meteorological seasons (December--February, June--August), and it results from an increase in the signal to noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal to noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10-20 years. Furthermore, some of the regional responses, such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter, are projected to emerge by 2020-2025, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.