16 resultados para Aerodynamics, Supersonic
em CentAUR: Central Archive University of Reading - UK
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, isentropic flow. The scheme incorporates numerical characteristic decomposition, is shock-capturing by design and incorporates space marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).
Resumo:
Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.
Resumo:
The Sun's open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot number or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relate to an observable parameter. The supersonic nature of the solar wind means open solar flux can only be removed by near-Sun magnetic reconnection between open solar magnetic field lines, be they open or closed heliospheric field lines. In this study we reconstruct open solar flux over the last three solar cycles and demonstrate that the loss term may be related to the degree to which the heliospheric current sheet (HCS) is warped, i.e., locally tilted from the solar rotation direction. This can account for both the large dip in open solar flux at the time of sunspot maximum as well as the asymmetry in open solar flux during the rising and declining phases of the solar cycle. The observed cycle-to-cycle variability is also well matched. Following Sheeley et al. (2001), we attribute modulation of open solar flux by the degree of warp of the HCS to the rate at which opposite polarity open solar flux is brought together by differential rotation.
Resumo:
Small gaseous combustion systems are being targeted by strict pollution legislation which will provide challenges to reduce the NOx being emitted. A novel type of gas burner has been successfully designed and developed which incorporates a Coanda ejector to promote recirculation of flue gas from the burner exit. This provides a combustion system which gives very low emissions of NOx and CO, whilst maintaining a high degree of flame stability over a range of air/fuel ratios and fuel flow rates. Recirculation of flue gas was obtained by manipulating the aerodynamics of the system, without the aid of external duct work or moving parts. The design of the burner allowed very low pollutant emissions near stoichiometric conditions, resulting in high temperatures of the exit gas. Potential applications of this type of burner are in small and intermediate furnaces where low NOx emissions are required. Moreover, very high-temperature applications, such as glass furnaces could benefit in both cost and pollutant emissions from such a burner.
A wind-tunnel study of flow distortion at a meteorological sensor on top of the BT Tower, London, UK
Resumo:
High quality wind measurements in cities are needed for numerous applications including wind engineering. Such data-sets are rare and measurement platforms may not be optimal for meteorological observations. Two years' wind data were collected on the BT Tower, London, UK, showing an upward deflection on average for all wind directions. Wind tunnel simulations were performed to investigate flow distortion around two scale models of the Tower. Using a 1:160 scale model it was shown that the Tower causes a small deflection (ca. 0.5°) compared to the lattice on top on which the instruments were placed (ca. 0–4°). These deflections may have been underestimated due to wind tunnel blockage. Using a 1:40 model, the observed flow pattern was consistent with streamwise vortex pairs shed from the upstream lattice edge. Correction factors were derived for different wind directions and reduced deflection in the full-scale data-set by <3°. Instrumental tilt caused a sinusoidal variation in deflection of ca. 2°. The residual deflection (ca. 3°) was attributed to the Tower itself. Correction of the wind-speeds was small (average 1%) therefore it was deduced that flow distortion does not significantly affect the measured wind-speeds and the wind climate statistics are reliable.
Resumo:
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas.
Resumo:
To calculate the potential wind loading on a tall building in an urban area, an accurate representation of the wind speed profile is required. However, due to a lack of observations, wind engineers typically estimate the characteristics of the urban boundary layer by translating the measurements from a nearby reference rural site. This study presents wind speed profile data obtained from a Doppler lidar in central London, UK, during an 8 month observation period. Used in conjunction with wind speed data measured at a nearby airport, the data have been used to assess the accuracy of the predictions made by the wind engineering tools currently available. When applied to multiple changes in surface roughness identified from morphological parameters, the non-equilibrium wind speed profile model developed by Deaves (1981) provides a good representation of the urban wind speed profile. For heights below 500 m, the predicted wind speed remains within the 95% confidence interval of the measured data. However, when the surface roughness is estimated using land use as a proxy, the model tends to overestimate the wind speed, particularly for very high wind speed periods. These results highlight the importance of a detailed assessment of the nature of the surface when estimating the wind speed above an urban surface.
Resumo:
To optimise the placement of small wind turbines in urban areas a detailed understanding of the spatial variability of the wind resource is required. At present, due to a lack of observations, the NOABL wind speed database is frequently used to estimate the wind resource at a potential site. However, recent work has shown that this tends to overestimate the wind speed in urban areas. This paper suggests a method for adjusting the predictions of the NOABL in urban areas by considering the impact of the underlying surface on a neighbourhood scale. In which, the nature of the surface is characterised on a 1 km2 resolution using an urban morphology database. The model was then used to estimate the variability of the annual mean wind speed across Greater London at a height typical of current small wind turbine installations. Initial validation of the results suggests that the predicted wind speeds are considerably more accurate than the NOABL values. The derived wind map therefore currently provides the best opportunity to identify the neighbourhoods in Greater London at which small wind turbines yield their highest energy production. The model does not consider street scale processes, however previously derived scaling factors can be applied to relate the neighbourhood wind speed to a value at a specific rooftop site. The results showed that the wind speed predicted across London is relatively low, exceeding 4 ms-1 at only 27% of the neighbourhoods in the city. Of these sites less than 10% are within 10 km of the city centre, with the majority over 20 km from the city centre. Consequently, it is predicted that small wind turbines tend to perform better towards the outskirts of the city, therefore for cities which fit the Burgess concentric ring model, such as Greater London, ‘distance from city centre’ is a useful parameter for siting small wind turbines. However, there are a number of neighbourhoods close to the city centre at which the wind speed is relatively high and these sites can only been identified with a detailed representation of the urban surface, such as that developed in this study.
Resumo:
Dispersion in the near-field region of localised releases in urban areas is difficult to predict because of the strong influence of individual buildings. Effects include upstream dispersion, trapping of material into building wakes and enhanced concentration fluctuations. As a result, concentration patterns are highly variable in time and mean profiles in the near field are strongly non-Gaussian. These aspects of near-field dispersion are documented by analysing data from direct numerical simulations in arrays of building-like obstacles and are related to the underlying flow structure. The mean flow structure around the buildings is found to exert a strong influence over the dispersion of material in the near field. Diverging streamlines around buildings enhance lateral dispersion. Entrainment of material into building wakes in the very near field gives rise to secondary sources, which then affect the subsequent dispersion pattern. High levels of concentration fluctuations are also found in this very near field; the fluctuation intensity is of order 2 to 5.
Resumo:
As the integration of vertical axis wind turbines in the built environment is a promising alternative to horizontal axis wind turbines, a 2D computational investigation of an augmented wind turbine is proposed and analysed. In the initial CFD analysis, three parameters are carefully investigated: mesh resolution; turbulence model; and time step size. It appears that the mesh resolution and the turbulence model affect result accuracy; while the time step size examined, for the unsteady nature of the flow, has small impact on the numerical results. In the CFD validation of the open rotor with secondary data, the numerical results are in good agreement in terms of shape. It is, however, observed a discrepancy factor of 2 between numerical and experimental data. Successively, the introduction of an omnidirectional stator around the wind turbine increases the power and torque coefficients by around 30–35% when compared to the open case; but attention needs to be given to the orientation of the stator blades for optimum performance. It is found that the power and torque coefficients of the augmented wind turbine are independent of the incident wind speed considered.
Resumo:
A great number of studies on wind conditions in passages between slab-type buildings have been conducted in the past. However, wind conditions under different structure and configuration of buildings is still unclear and studies existed still can’t provide guidance on urban planning and design, due to the complexity of buildings and aerodynamics. The aim of this paper is to provide more insight in the mechanism of wind conditions in passages. In this paper, a simplified passage model with non-parallel buildings is developed on the basis of the wind tunnel experiments conducted by Blocken et al. (2008). Numerical simulation based on CFD is employed for a detailed investigation of the wind environment in passages between two long narrow buildings with different directions and model validation is performed by comparing numerical results with corresponding wind tunnel measurements.