13 resultados para Aerial photogrammetry
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents an image motion model for airborne three-line-array (TLA) push-broom cameras. Both aircraft velocity and attitude instability are taken into account in modeling image motion. Effects of aircraft pitch, roll, and yaw on image motion are analyzed based on geometric relations in designated coordinate systems. The image motion is mathematically modeled by image motion velocity multiplied by exposure time. Quantitative analysis to image motion velocity is then conducted in simulation experiments. The results have shown that image motion caused by aircraft velocity is space invariant while image motion caused by aircraft attitude instability is more complicated. Pitch,roll and yaw all contribute to image motion to different extents. Pitch dominates the along-track image motion and both roll and yaw greatly contribute to the cross-track image motion. These results provide a valuable base for image motion compensation to ensure high accuracy imagery in aerial photogrammetry.
Resumo:
Maps of kriged soil properties for precision agriculture are often based on a variogram estimated from too few data because the costs of sampling and analysis are often prohibitive. If the variogram has been computed by the usual method of moments, it is likely to be unstable when there are fewer than 100 data. The scale of variation in soil properties should be investigated prior to sampling by computing a variogram from ancillary data, such as an aerial photograph of the bare soil. If the sampling interval suggested by this is large in relation to the size of the field there will be too few data to estimate a reliable variogram for kriging. Standardized variograms from aerial photographs can be used with standardized soil data that are sparse, provided the data are spatially structured and the nugget:sill ratio is similar to that of a reliable variogram of the property. The problem remains of how to set this ratio in the absence of an accurate variogram. Several methods of estimating the nugget:sill ratio for selected soil properties are proposed and evaluated. Standardized variograms with nugget:sill ratios set by these methods are more similar to those computed from intensive soil data than are variograms computed from sparse soil data. The results of cross-validation and mapping show that the standardized variograms provide more accurate estimates, and preserve the main patterns of variation better than those computed from sparse data.
Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry
Resumo:
Tidal channel networks play an important role in the intertidal zone, exerting substantial control over the hydrodynamics and sediment transport of the region and hence over the evolution of the salt marshes and tidal flats. The study of the morphodynamics of tidal channels is currently an active area of research, and a number of theories have been proposed which require for their validation measurement of channels over extensive areas. Remotely sensed data provide a suitable means for such channel mapping. The paper describes a technique that may be adapted to extract tidal channels from either aerial photographs or LiDAR data separately, or from both types of data used together in a fusion approach. Application of the technique to channel extraction from LiDAR data has been described previously. However, aerial photographs of intertidal zones are much more commonly available than LiDAR data, and most LiDAR flights now involve acquisition of multispectral images to complement the LiDAR data. In view of this, the paper investigates the use of multispectral data for semiautomatic identification of tidal channels, firstly from only aerial photographs or linescanner data, and secondly from fused linescanner and LiDAR data sets. A multi-level, knowledge-based approach is employed. The algorithm based on aerial photography can achieve a useful channel extraction, though may fail to detect some of the smaller channels, partly because the spectral response of parts of the non-channel areas may be similar to that of the channels. The algorithm for channel extraction from fused LiDAR and spectral data gives an increased accuracy, though only slightly higher than that obtained using LiDAR data alone. The results illustrate the difficulty of developing a fully automated method, and justify the semi-automatic approach adopted.
Resumo:
The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of metres wide and metres deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitising of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetry (and later aerial photography). The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels using a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that any network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.
Resumo:
We have reported earlier that modification of commercial graphite Pt-supported catalysts with Teflon fluorinated polymeric coating of a very strong hydrophobic nature can significantly improve catalytic activity for aerial oxidation of water-insoluble alcohols such as anthracene methanol in supercritical carbon dioxide (scCO(2)). Thus, this paper presents some further characterization of these new catalyst materials and the working fluid phase during the catalysis. Using the same Teflon-modified metal catalysts, this paper addresses the oxidation of another water-insoluble alcohol molecule, m-hydrobenzoin in scCO(2). It is found that conversion and product distribution of this diol oxidation critically depend on the temperature and pressure of the scCO(2) used, which suggest the remarkable solvent properties of the scCO(2) under these unconventional oxidation conditions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
Insect pollinators provide a critical ecosystem service by pollinating many wild flowers and crops. It is therefore essential to be able to effectively survey and monitor pollinator communities across a range of habitats, and in particular, sample the often stratified parts of the habitats where insects are found. To date, a wide array of sampling methods have been used to collect insect pollinators, but no single method has been used effectively to sample across habitat types and throughout the spatial structure of habitats. Here we present a method of ‘aerial pan-trapping’ that allows insect pollinators to be sampled across the vertical strata from the canopy of forests to agro-ecosystems. We surveyed and compared the species richness and abundance of a wide range of insect pollinators in agricultural, secondary regenerating forest and primary forest habitats in Ghana to evaluate the usefulness of this approach. In addition to confirming the efficacy of the method at heights of up to 30 metres and the effects of trap color on catch, we found greatest insect abundance in agricultural land and higher bee abundance and species richness in undisturbed forest compared to secondary forest.
Resumo:
Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.
Resumo:
Changes in the map area of 498 glaciers located on the Main Caucasus ridge (MCR) and on Mt. Elbrus in the Greater Caucasus Mountains (Russia and Georgia) were assessed using multispectral ASTER and panchromatic Landsat imagery with 15 m spatial resolution in 1999/2001 and 2010/2012. Changes in recession rates of glacier snouts between 1987–2001 and 2001–2010 were investigated using aerial photography and ASTER imagery for a sub-sample of 44 glaciers. In total, glacier area decreased by 4.7 ± 2.1% or 19.2 ± 8.7 km2 from 407.3 ± 5.4 km2 to 388.1 ± 5.2 km2. Glaciers located in the central and western MCR lost 13.4 ± 7.3 km2 (4.7 ± 2.5%) in total or 8.5 km2 (5.0 ± 2.4%) and 4.9 km2 (4.1 ± 2.7%) respectively. Glaciers on Mt. Elbrus, although located at higher elevations, lost 5.8 ± 1.4 km2 (4.9 ± 1.2%) of their total area. The recession rates of valley glacier termini increased between 1987–2000/01 and 2000/01–2010 (2000 for the western MCR and 2001 for the central MCR and Mt.~Elbrus) from 3.8 ± 0.8, 3.2 ± 0.9 and 8.3 ± 0.8 m yr−1 to 11.9 ± 1.1, 8.7 ± 1.1 and 14.1 ± 1.1 m yr−1 in the central and western MCR and on Mt. Elbrus respectively. The highest rate of increase in glacier termini retreat was registered on the southern slope of the central MCR where it has tripled. A positive trend in summer temperatures forced glacier recession, and strong positive temperature anomalies in 1998, 2006, and 2010 contributed to the enhanced loss of ice. An increase in accumulation season precipitation observed in the northern MCR since the mid-1980s has not compensated for the effects of summer warming while the negative precipitation anomalies, observed on the southern slope of the central MCR in the 1990s, resulted in stronger glacier wastage.
Resumo:
Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.