40 resultados para Adaptive object model
em CentAUR: Central Archive University of Reading - UK
Resumo:
Different optimization methods can be employed to optimize a numerical estimate for the match between an instantiated object model and an image. In order to take advantage of gradient-based optimization methods, perspective inversion must be used in this context. We show that convergence can be very fast by extrapolating to maximum goodness-of-fit with Newton's method. This approach is related to methods which either maximize a similar goodness-of-fit measure without use of gradient information, or else minimize distances between projected model lines and image features. Newton's method combines the accuracy of the former approach with the speed of convergence of the latter.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
A one-dimensional water column model using the Mellor and Yamada level 2.5 parameterization of vertical turbulent fluxes is presented. The model equations are discretized with a mixed finite element scheme. Details of the finite element discrete equations are given and adaptive mesh refinement strategies are presented. The refinement criterion is an "a posteriori" error estimator based on stratification, shear and distance to surface. The model performances are assessed by studying the stress driven penetration of a turbulent layer into a stratified fluid. This example illustrates the ability of the presented model to follow some internal structures of the flow and paves the way for truly generalized vertical coordinates. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents in detail a theoretical adaptive model of thermal comfort based on the “Black Box” theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient (λ) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results.
Resumo:
Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.
Resumo:
This paper discusses the application of model reference adaptive control concepts to the automatic tuning of PID controllers. The effectiveness of the proposed method is shown through simulated applications. The gradient approach and simulated examples are provided.
Resumo:
This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application.
Resumo:
The aim of this paper is essentially twofold: first, to describe the use of spherical nonparametric estimators for determining statistical diagnostic fields from ensembles of feature tracks on a global domain, and second, to report the application of these techniques to data derived from a modern general circulation model. New spherical kernel functions are introduced that are more efficiently computed than the traditional exponential kernels. The data-driven techniques of cross-validation to determine the amount elf smoothing objectively, and adaptive smoothing to vary the smoothing locally, are also considered. Also introduced are techniques for combining seasonal statistical distributions to produce longer-term statistical distributions. Although all calculations are performed globally, only the results for the Northern Hemisphere winter (December, January, February) and Southern Hemisphere winter (June, July, August) cyclonic activity are presented, discussed, and compared with previous studies. Overall, results for the two hemispheric winters are in good agreement with previous studies, both for model-based studies and observational studies.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
In this article, we examine the case of a system that cooperates with a “direct” user to plan an activity that some “indirect” user, not interacting with the system, should perform. The specific application we consider is the prescription of drugs. In this case, the direct user is the prescriber and the indirect user is the person who is responsible for performing the therapy. Relevant characteristics of the two users are represented in two user models. Explanation strategies are represented in planning operators whose preconditions encode the cognitive state of the indirect user; this allows tailoring the message to the indirect user's characteristics. Expansion of optional subgoals and selection among candidate operators is made by applying decision criteria represented as metarules, that negotiate between direct and indirect users' views also taking into account the context where explanation is provided. After the message has been generated, the direct user may ask to add or remove some items, or change the message style. The system defends the indirect user's needs as far as possible by mentioning the rationale behind the generated message. If needed, the plan is repaired and the direct user model is revised accordingly, so that the system learns progressively to generate messages suited to the preferences of people with whom it interacts.
Resumo:
Periods between predator detection and an escape response (escape delays) by prey upon attack by a predator often arise because animals trade-off the benefits such a delay gives for assessing risk accurately with the costs of not escaping as quickly as possible. We tested whether freezing behaviour (complete immobility in a previously foraging bird) observed in chaffinches before escaping from an approaching potential threat functions as a period of risk-assessment, and whether information on predator identity is gained even when time available is very short. We flew either a model of a sparrowhawk (predator) or a woodpigeon (no threat) at single chaffinches. Escape delays were significantly shorter with the hawk, except when a model first appeared close to the chaffinch. Chaffinches were significantly more vigilant when they resumed feeding after exposure to the sparrowhawk compared to the woodpigeon showing that they were able to distinguish between threats, and this applied even when time available for assessment was short (an average of 0.29 s). Our results show freezing in chaffinches functions as an effective economic risk assessment period, and that threat information is gained even when very short periods of time are available during an attack.
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
A hierarchical Bayesian model for predicting the functional consequences of amino-acid polymorphisms
Resumo:
Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.
Resumo:
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F-ST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F-ST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of F-ST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.