106 resultados para Adaptive design, D-optimal design, MCMC, Pharmacokinetics

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporating an emerging therapy as a new randomisation arm in a clinical trial that is open to recruitment would be desirable to researchers, regulators and patients to ensure that the trial remains current, new treatments are evaluated as quickly as possible, and the time and cost for determining optimal therapies is minimised. It may take many years to run a clinical trial from concept to reporting within a rapidly changing drug development environment; hence, in order for trials to be most useful to inform policy and practice, it is advantageous for them to be able to adapt to emerging therapeutic developments. This paper reports a comprehensive literature review on methodologies for, and practical examples of, amending an ongoing clinical trial by adding a new treatment arm. Relevant methodological literature describing statistical considerations required when making this specific type of amendment is identified, and the key statistical concepts when planning the addition of a new treatment arm are extracted, assessed and summarised. For completeness, this includes an assessment of statistical recommendations within general adaptive design guidance documents. Examples of confirmatory ongoing trials designed within the frequentist framework that have added an arm in practice are reported; and the details of the amendment are reviewed. An assessment is made as to how well the relevant statistical considerations were addressed in practice, and the related implications. The literature review confirmed that there is currently no clear methodological guidance on this topic, but that guidance would be advantageous to help this efficient design amendment to be used more frequently and appropriately in practice. Eight confirmatory trials were identified to have added a treatment arm, suggesting that trials can benefit from this amendment and that it can be practically feasible; however, the trials were not always able to address the key statistical considerations, often leading to uninterpretable or invalid outcomes. If the statistical concepts identified within this review are considered and addressed during the design of a trial amendment, it is possible to effectively assess a new treatment arm within an ongoing trial without compromising the original trial outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background It can be argued that adaptive designs are underused in clinical research. We have explored concerns related to inadequate reporting of such trials, which may influence their uptake. Through a careful examination of the literature, we evaluated the standards of reporting of group sequential (GS) randomised controlled trials, one form of a confirmatory adaptive design. Methods We undertook a systematic review, by searching Ovid MEDLINE from the 1st January 2001 to 23rd September 2014, supplemented with trials from an audit study. We included parallel group, confirmatory, GS trials that were prospectively designed using a Frequentist approach. Eligible trials were examined for compliance in their reporting against the CONSORT 2010 checklist. In addition, as part of our evaluation, we developed a supplementary checklist to explicitly capture group sequential specific reporting aspects, and investigated how these are currently being reported. Results Of the 284 screened trials, 68(24%) were eligible. Most trials were published in “high impact” peer-reviewed journals. Examination of trials established that 46(68%) were stopped early, predominantly either for futility or efficacy. Suboptimal reporting compliance was found in general items relating to: access to full trials protocols; methods to generate randomisation list(s); details of randomisation concealment, and its implementation. Benchmarking against the supplementary checklist, GS aspects were largely inadequately reported. Only 3(7%) trials which stopped early reported use of statistical bias correction. Moreover, 52(76%) trials failed to disclose methods used to minimise the risk of operational bias, due to the knowledge or leakage of interim results. Occurrence of changes to trial methods and outcomes could not be determined in most trials, due to inaccessible protocols and amendments. Discussion and Conclusions There are issues with the reporting of GS trials, particularly those specific to the conduct of interim analyses. Suboptimal reporting of bias correction methods could potentially imply most GS trials stopping early are giving biased results of treatment effects. As a result, research consumers may question credibility of findings to change practice when trials are stopped early. These issues could be alleviated through a CONSORT extension. Assurance of scientific rigour through transparent adequate reporting is paramount to the credibility of findings from adaptive trials. Our systematic literature search was restricted to one database due to resource constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of review Novel analyses of the relations between thyroid hormone receptor signaling and estrogen receptor—dependent mechanisms are timely for two sets of reasons. Clinically, both affect mood and foster neuronal growth and regeneration. Mechanistically, they overlap at the levels of DNA recognition elements, coactivators, and signal transduction systems. Crosstalk between thyroid hormone receptors and estrogen receptors is possibly important to integrate external signals to transcription within neurons. Recent findings It has been shown that reproductive functions, including behaviors, driven by estrogens can be antagonized by thyroid hormones, and it has been argued that such crosstalk is biologically adaptive to ensure optimal reproduction. Transcriptional facilitation during transient transfunction studies show that the interactions between thyroid receptor isoforms and estrogen receptor isoforms depend on cell type and promoter context. Overall, this pattern of interactions assures multiple and flexible means of transcriptional regulation. Surprisingly, in some brain areas, thyroid hormone actions can synergize with estrogenic effects, particularly when nongenomic modes of action are considered, such as kinase activation, which, as has been reported, affect later estrogen receptor—induced genomic events. Summary In summary, recent work with nerve cells has contributed to a paradigm shift in how the molecular and behavioral effects of hormones which act through nuclear receptors are viewed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The frequency responses of two 50 Hz and one 400 Hz induction machines have been measured experimentally over a frequency range of 1 kHz to 400 kHz. This study has shown that the stator impedances of the machines behave in a similar manner to a parallel resonant circuit, and hence have a resonant point at which the Input impedance of the machine is at a maximum. This maximum impedance point was found experimentally to be as low as 33 kHz, which is well within the switching frequency ranges of modern inverter drives. This paper investigates the possibility of exploiting the maximum impedance point of the machine, by taking it into consideration when designing an inverter, in order to minimize ripple currents due to the switching frequency. Minimization of the ripple currents would reduce torque pulsation and losses, increasing overall performance. A modified machine model was developed to take into account the resonant point, and this model was then simulated with an inverter to demonstrate the possible advantages of matching the inverter switching frequency to the resonant point. Finally, in order to experimentally verify the simulated results, a real inverter with a variable switching frequency was used to drive an induction machine. Experimental results are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is increasing interest in combining Phases II and III of clinical development into a single trial in which one of a small number of competing experimental treatments is ultimately selected and where a valid comparison is made between this treatment and the control treatment. Such a trial usually proceeds in stages, with the least promising experimental treatments dropped as soon as possible. In this paper we present a highly flexible design that uses adaptive group sequential methodology to monitor an order statistic. By using this approach, it is possible to design a trial which can have any number of stages, begins with any number of experimental treatments, and permits any number of these to continue at any stage. The test statistic used is based upon efficient scores, so the method can be easily applied to binary, ordinal, failure time, or normally distributed outcomes. The method is illustrated with an example, and simulations are conducted to investigate its type I error rate and power under a range of scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious RBF network model with excellent generalisation performance. The D-optimality design criterion enhances the model efficiency and robustness. A further advantage of the combined approach is that the user only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.