49 resultados para Adaptive Systems

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is argued that the truth status of emergent properties of complex adaptive systems models should be based on an epistemology of proof by constructive verification and therefore on the ontological axioms of a non-realist logical system such as constructivism or intuitionism. ‘Emergent’ properties of complex adaptive systems (CAS) models create particular epistemological and ontological challenges. These challenges bear directly on current debates in the philosophy of mathematics and in theoretical computer science. CAS research, with its emphasis on computer simulation, is heavily reliant on models which explore the entailments of Formal Axiomatic Systems (FAS). The incompleteness results of Gödel, the incomputability results of Turing, and the Algorithmic Information Theory results of Chaitin, undermine a realist (platonic) truth model of emergent properties. These same findings support the hegemony of epistemology over ontology and point to alternative truth models such as intuitionism, constructivism and quasi-empiricism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines when “incremental” change is likely to trigger “discontinuous” change, using the lens of complex adaptive systems theory. Going beyond the simulations and case studies through which complex adaptive systems have been approached so far, we study the relationship between incremental organizational reconfigurations and discontinuous organizational restructurings using a large-scale database of U.S. Fortune 50 industrial corporations. We develop two types of escalation process in organizations: accumulation and perturbation. Under ordinary conditions, it is perturbation rather than the accumulation that is more likely to trigger subsequent discontinuous change. Consistent with complex adaptive systems theory, organizations are more sensitive to both accumulation and perturbation in conditions of heightened disequilibrium. Contrary to expectations, highly interconnected organizations are not more liable to discontinuous change. We conclude with implications for further research, especially the need to attend to the potential role of managerial design and coping when transferring complex adaptive systems theory from natural systems to organizational systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a literature review, we argue that new models of peatland development are needed. Many existing models do not account for potentially important ecohydrological feedbacks, and/or ignore spatial structure and heterogeneity. Existing models, including those that simulate a near total loss of the northern peatland carbon store under a warming climate, may produce misleading results because they rely upon oversimplified representations of ecological and hydrological processes. In this, the first of a pair of papers, we present the conceptual framework for a model of peatland development, DigiBog, which considers peatlands as complex adaptive systems. DigiBog accounts for the interactions between the processes which govern litter production and peat decay, peat soil hydraulic properties, and peatland water-table behaviour, in a novel and genuinely ecohydrological manner. DigiBog consists of a number of interacting submodels, each representing a different aspect of peatland ecohydrology. Here we present in detail the mathematical and computational basis, as well as the implementation and testing, of the hydrological submodel. Remaining submodels are described and analysed in the accompanying paper. Tests of the hydrological submodel against analytical solutions for simple aquifers were highly successful: the greatest deviation between DigiBog and the analytical solutions was 2·83%. We also applied the hydrological submodel to irregularly shaped aquifers with heterogeneous hydraulic properties—situations for which no analytical solutions exist—and found the model's outputs to be plausible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A nonlinear general predictive controller (NLGPC) is described which is based on the use of a Hammerstein model within a recursive control algorithm. A key contribution of the paper is the use of a novel, one-step simple root solving procedure for the Hammerstein model, this being a fundamental part of the overall tuning algorithm. A comparison is made between NLGPC and nonlinear deadbeat control (NLDBC) using the same one-step nonlinear components, in order to investigate NLGPC advantages and disadvantages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The notion that learning can be enhanced when a teaching approach matches a learner’s learning style has been widely accepted in classroom settings since the latter represents a predictor of student’s attitude and preferences. As such, the traditional approach of ‘one-size-fits-all’ as may be applied to teaching delivery in Educational Hypermedia Systems (EHSs) has to be changed with an approach that responds to users’ needs by exploiting their individual differences. However, establishing and implementing reliable approaches for matching the teaching delivery and modalities to learning styles still represents an innovation challenge which has to be tackled. In this paper, seventy six studies are objectively analysed for several goals. In order to reveal the value of integrating learning styles in EHSs, different perspectives in this context are discussed. Identifying the most effective learning style models as incorporated within AEHSs. Investigating the effectiveness of different approaches for modelling students’ individual learning traits is another goal of this study. Thus, the paper highlights a number of theoretical and technical issues of LS-BAEHSs to serve as a comprehensive guidance for researchers who interest in this area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a novel on-line learning approach for radial basis function (RBF) neural network. Based on an RBF network with individually tunable nodes and a fixed small model size, the weight vector is adjusted using the multi-innovation recursive least square algorithm on-line. When the residual error of the RBF network becomes large despite of the weight adaptation, an insignificant node with little contribution to the overall system is replaced by a new node. Structural parameters of the new node are optimized by proposed fast algorithms in order to significantly improve the modeling performance. The proposed scheme describes a novel, flexible, and fast way for on-line system identification problems. Simulation results show that the proposed approach can significantly outperform existing ones for nonstationary systems in particular.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.