90 resultados para Adaptation répétée

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edaphic variables figure significantly in plant community adaptations in tropical ecosystems but are often difficult to resolve because of the confounding influence of climate. Within the Chiquibul forest of Belize, large areas of Ultisols and Inceptisols occur juxtaposed within a larger zone of similar climate, permitting unambiguous assessment of edaphic contributions to forest composition. Wet chemical analyses, X-ray diffraction and X-ray fluorescence spectroscopy were employed to derive chemical (pH, exchangeable cations, CEC, total and organic C, total trace elements) and physical (texture, mineralogy) properties of four granite-derived Ustults from the Mountain Pine Ridge plateau and four limestone-derived Ustepts from the San Pastor region. The soils of these two regions support two distinct forests, each possessing a species composition reflecting the many contrasting physicochemical properties of the underlying soil. Within the Mountain Pine Ridge forest, species abundance and diversity is constrained by nutrient deficiencies and water-holding limitations imposed by the coarse textured, highly weathered Ultisols. As a consequence, the forest is highly adapted to seasonal drought, frequent fires and the significant input of atmospherically derived nutrients. The nutrient-rich Inceptisols of the San Pastor region, conversely, support an abundant and diverse evergreen forest, dominated by Sabal mauritiiformis, Cryosophila stauracantha and Manilkara spp. Moreover, the deep, fine textured soils in the depressions of the karstic San Pastor landscape collect and retain during the wet season much available water, thereby serving as refugia during particularly long periods of severe drought. To the extent that the soils of the Chiquibul region promote and maintain forest diversity, they also confer redundancy and resilience to these same forests and, to the broader ecosystem, of which they are a central part. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testing of the Integrated Nitrogen model for Catchments (INCA) in a wide range of ecosystem types across Europe has shown that the model underestimates N transformation processes to a large extent in northern catchments of Finland and Norway in winter and spring. It is found, and generally assumed, that microbial activity in soils proceeds at low rates at northern latitudes during winter, even at sub-zero temperatures. The INCA model was modified to improve the simulation of N transformation rates in northern catchments, characterised by cold climates and extensive snow accumulation and insulation in winter, by introducing an empirical function to simulate soil temperatures below the seasonal snow pack, and a degree-day model to calculate the depth of the snow pack. The proposed snow-correction factor improved the simulation of soil temperatures at Finnish and Norwegian field sites in winter, although soil temperature was still underestimated during periods with a thin snow cover. Finally, a comparison between the modified INCA version (v. 1.7) and the former version (v. 1.6) was made at the Simojoki river basin in northern Finland and at Dalelva Brook in northern Norway. The new modules did not imply any significant changes in simulated NO3- concentration levels in the streams but improved the timing of simulated higher concentrations. The inclusion of a modified temperature response function and an empirical snow-correction factor improved the flexibility and applicability of the model for climate effect studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Adaptation of plant populations to local environments has been shown in many species but local adaptation is not always apparent and spatial scales of differentiation are not well known. In a reciprocal transplant experiment we tested whether: (i) three widespread grassland species are locally adapted at a European scale; (ii) detection of local adaptation depends on competition with the local plant community; and (iii) local differentiation between neighbouring populations from contrasting habitats can be stronger than differentiation at a European scale. 2 Seeds of Holcus lanatus, Lotus corniculatus and Plantago lanceolata from a Swiss, Czech and UK population were sown in a reciprocal transplant experiment at fields that exhibit environmental conditions similar to the source sites. Seedling emergence, survival, growth and reproduction were recorded for two consecutive years. 3 The effect of competition was tested by comparing individuals in weeded monocultures with plants sown together with species from the local grassland community. To compare large-scale vs. small-scale differentiation, a neighbouring population from a contrasting habitat (wet-dry contrast) was compared with the 'home' and 'foreign' populations. 4 In P. lanceolata and H. lanatus, a significant home-site advantage was detected in fitness-related traits, thus indicating local adaptation. In L. corniculatus, an overall superiority of one provenance was found. 5 The detection of local adaptation depended on competition with the local plant community. In the absence of competition the home-site advantage was underestimated in P. lanceolata and overestimated in H. lanatus. 6 A significant population differentiation between contrasting local habitats was found. In some traits, this small-scale was greater than large-scale differentiation between countries. 7 Our results indicate that local adaptation in real plant communities cannot necessarily be predicted from plants grown in weeded monocultures and that tests on the relationship between fitness and geographical distance have to account for habitat-dependent small-scale differentiation. Considering the strong small-scale differentiation, a local provenance from a different habitat may not be the best choice in ecological restoration if distant populations from a more similar habitat are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of temperature in the determination of the yield of an annual crop (groundnut; Arachis hypogaea L. in India) was assessed. Simulations from a regional climate model (PRECIS) were used with a crop model (GLAM) to examine crop growth under simulated current (1961-1990) and future (2071-2100) climates. Two processes were examined: the response of crop duration to mean temperature and the response of seed-set to extremes of temperature. The relative importance of, and interaction between, these two processes was examined for a number of genotypic characteristics, which were represented by using different values of crop model parameters derived from experiments. The impact of mean and extreme temperatures varied geographically, and depended upon the simulated genotypic properties. High temperature stress was not a major determinant of simulated yields in the current climate, but affected the mean and variability of yield under climate change in two regions which had contrasting statistics of daily maximum temperature. Changes in mean temperature had a similar impact on mean yield to that of high temperature stress in some locations and its effects were more widespread. Where the optimal temperature for development was exceeded, the resulting increase in duration in some simulations fully mitigated the negative impacts of extreme temperatures when sufficient water was available for the extended growing period. For some simulations the reduction in mean yield between the current and future climates was as large as 70%, indicating the importance of genotypic adaptation to changes in both means and extremes of temperature under climate change. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development policies in the pastoral areas of Africa assume that pastoralists are poor. Using the Afar pastoralists of Ethiopia as the focus of research this article challenges this depiction of pastoralism by exploring pastoral livelihood goals and traditional strategies for managing risk. Investment in social institutions to minimise the risk of outright destitution, sometimes at the cost of increased poverty, and significant manipulation of local markets enable the Afar to exploit a highly uncertain and marginal environment. Improved development assistance and enhanced targeting of the truly vulnerable within pastoral societies demands an acceptance that pastoral poverty is neither uniform nor universal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and ( abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume ( Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigeonpea is grown in wide range of cropping systems and environments, both in East Africa and internationally. An important feature of adaptation to these diverse systems and environments is the timing of flowering and maturity. Most traditional cultivars grown in Tanzania are medium to late flowering types (> 150 days), although extra-early flowering cultivars are now available. The aim of the present investigation was to measure biomass (BY) and seed (SY) yield of a set of phenologically diverse cultivars to determine their adaptation to contrasting environments in Tanzania. Ten cultivars, from extra-early (60 days) to late (> 180 days) flowering, were planted at six locations varying in mean temperature, photoperiod and rainfall. Days to flowering (DTF) and maturity, and above-ground BY and SY at maturity, were measured. A stress index (ETr:ETm ratio, 100 = no stress) was computed for each site. Rainfall and the stress index at the different sites varied from 322 to 1297 mm and 57 to 89, respectively. Among cultivars, DTF varied from 55 to 320 days, the stress index from 3 to 98, BY from 700 to 25,000 kg ha(-1), and SY from 0 to 4000 kg ha(-1). The highest yielding environment was at Selian, where mean temperatures were favourable (19 degrees C) and no stress occurred. At all sites there was an optimum DTF, which for SY varied from < 100 to 150 days. The best adapted cultivars were ICP 7035, ICPL 90094, Kat 50 and QP37, which were all medium flowering (c. 150 day) types. Extra-early cultivars such as ICPL 86005 also showed considerable potential, especially in short-season environments. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural resource-dependent societies in developing countries are facing increased pressures linked to global climate change. While social-ecological systems evolve to accommodate variability, there is growing evidence that changes in drought, storm and flood extremes are increasing exposure of currently vulnerable populations. In many countries in Africa, these pressures are compounded by disruption to institutions and variability in livelihoods and income. The interactions of both rapid and slow onset livelihood disturbance contribute to enduring poverty and slow processes of rural livelihood renewal across a complex landscape. We explore cross-scale dynamics in coping and adaptation response, drawing on qualitative data from a case study in Mozambique. The research characterises the engagements across multiple institutional scales and the types of agents involved, providing insight into emergent conditions for adaptation to climate change in rural economies, The analysis explores local responses to climate shocks, food security and poverty reduction, through informal institutions, forms of livelihood diversification and collective land-use systems that allow reciprocity, flexibility and the ability to buffer shocks. However, the analysis shows that agricultural initiatives have helped to facilitate effective livelihood renewal, through the reorganisation of social institutions and opportunities for communication, innovation and micro-credit. Although there are challenges to mainstreaming adaptation at different scales, this research shows why it is critical to assess how policies can protect conditions for emergence of livelihood transformation. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the nature of recent (50 year) rainfall variability in the summer rainfall zone, South Africa, and how variability is recognised and responded to on the ground by farmers. Using daily rainfall data and self-organising mapping (SOM) we identify 12 internally homogeneous rainfall regions displaying differing parameters of precipitation change. Three regions, characterised by changing onset and timing of rains, rainfall frequencies and intensities, in Limpopo, North West and KwaZulu Natal provinces, were selected to investigate farmer perceptions of, and responses to, rainfall parameter changes. Village and household level analyses demonstrate that the trends and variabilities in precipitation parameters differentiated by the SOM analysis were clearly recognised by people living in the areas in which they occurred. A range of specific coping and adaptation strategies are employed by farmers to respond to climate shifts, some generic across regions and some facilitated by specific local factors. The study has begun to understand the complexity of coping and adaptation, and the factors that influence the decisions that are taken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tick-borne encephalitis virus (TBEV) causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA) virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A) in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards across Europe by adaptation to the indigenous tick species and if they are associated with severe forms of TBE.