31 resultados para Active power-factor correction
em CentAUR: Central Archive University of Reading - UK
Resumo:
Chemical substitution in Co3Sn2-xInxS2 (0 # x # 2) enables tuning of the Fermi level within narrow bands of Co d-states. This results in a compositionally induced double metal–semiconductor–metal transition and manipulation of the thermoelectric power factor. The maximum power factor (14 mW cm-1 K-2) is found for x ¼ 0.85, which corresponds to ZT z 0.2 at 300 K.
Resumo:
The effect of Pb2+ doping on the structure and thermoelectric properties of BiOCuSe (also known as BiCuSeO or BiCuOSe) is described. With increasing Pb2+ content, the expansion of the unit cell results in a weakening of the bonding between the [Bi2(1-x) Pb2xO2]2(1-x)+ and the [Cu2Se2]2(1-x)- layers. The electrical resistivity and Seebeck coefficient decrease in a systematic way with growing Pb2+ levels. The thermal conductivity rises due to the increase of the electronic contribution with doping. The power factor of materials with a 4-5% Pb2+ content takes values of ca. 8 W cm-1 K-2 over a wide temperature range. ZT at 673 K is enhanced by ca. 50% when compared to values found for other dopants, such as Sr2+ or Mg2+.
Resumo:
Historic analysis of the inflation hedging properties of stocks produced anomalous results, with equities often appearing to offer a perverse hedge against inflation. This has been attributed to the impact of real and monetary shocks to the economy, which influence both inflation and asset returns. It has been argued that real estate should provide a better hedge: however, empirical results have been mixed. This paper explores the relationship between commercial real estate returns (from both private and public markets) and economic, fiscal and monetary factors and inflation for US and UK markets. Comparative analysis of general equity and small capitalisation stock returns in both markets is carried out. Inflation is subdivided into expected and unexpected components using different estimation techniques. The analyses are undertaken using long-run error correction techniques. In the long-run, once real and monetary variables are included, asset returns are positively linked to anticipated inflation but not to inflation shocks. Adjustment processes are, however, gradual and not within period. Real estate returns, particularly direct market returns, exhibit characteristics that differ from equities.
Resumo:
Context: Pregnant tissues express corticotropin-releasing factor (CRF), a peptide modulating fetal and placental ACTH and cortisol secretion. These actions are modulated by the locally expressed CRF-binding protein (CRF-BP). Objective: The objective of the study was to determine whether CRF, CRF-BP, ACTH, and cortisol concentrations change in amniotic fluid and umbilical cord plasma in the presence of intraamniotic infection/inflammation (IAI) in women with spontaneous labor at term. Design: This was a cross-sectional study. Setting: The study was conducted at a tertiary referral center for obstetric care. Patients: Patients included women in active labor at term with (n = 39) and without (controls; n = 78) IAI. Main Outcome Measures: Amniotic fluid and umbilical cord plasma concentrations of CRF, CRF-BP, ACTH, and cortisol measured by RIA and immunoradiometric assays were measured. Results: In patients with IAI, amniotic fluid CRF (0.97 +/- 0.18 ng/ml) and CRF-BP (33.06 +/- 5.54 nmol/liter) concentrations were significantly (P < 0.001) higher than in controls (CRF: 0.32 +/- 0.04 ng/ml; CRF-BP: 14.69 +/- 2.79 ml). The umbilical cord plasma CRF and CRF-BP concentrations were significantly (P < 0.001 for all) higher in women with IAI than in controls (CRF: 2.96 +/- 0.35 ng/ml vs. 0.38 +/- 0.18 ng/ml; CRF-BP: 152.12 +/- 5.94 nmol/liter vs. 106.9 +/- 5.97 nmol/liter). In contrast, amniotic fluid and umbilical cord plasma ACTH and cortisol concentrations did not differ between groups. Conclusions: Amniotic fluid and umbilical cord plasma CRF and CRF-BP concentrations are increased in women with spontaneous labor at term and IAI. CRF-BP may modulate CRF actions on ACTH and cortisol secretion, playing a pivotal role in limiting the inflammatory process and thus avoiding an overactivation of the fetal/placental hypothalamus-pituitary-adrenal axis at birth.
Resumo:
This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Coxsackievirus B3 (CVB3) infection can result in myocarditis, which in turn may lead to a protracted immune response and subsequent dilated cardiomyopathy. Human decay-accelerating factor (DAF), a binding receptor for CVB3, was synthesized as a soluble IgG1-Fc fusion protein (DAF-Fc). In vitro, DAF-Fc was able to inhibit complement activity and block infection by CVB3, although blockade of infection varied widely among strains of CVB3. To determine the effects of DAF-Fc in vivo, 40 adolescent A/J mice were infected with a myopathic strain of CVB3 and given DAF-Fc treatment 3 days before infection, during infection, or 3 days after infection; the mice were compared with virus alone and sham-infected animals. Sections of heart, spleen, kidney, pancreas, and liver were stained with hematoxylin and eosin and submitted to in situ hybridization for both positive-strand and negative-strand viral RNA to determine the extent of myocarditis and viral infection, respectively. Salient histopathologic features, including myocardial lesion area, cell death, calcification and inflammatory cell infiltration, pancreatitis, and hepatitis were scored without knowledge of the experimental groups. DAF-Fc treatment of mice either preceding or concurrent with CVB3 infection resulted in a significant decrease in myocardial lesion area and cell death and a reduction in the presence of viral RNA. All DAF-Fc treatment groups had reduced infectious CVB3 recoverable from the heart after infection. DAF-Fc may be a novel therapeutic agent for active myocarditis and acute dilated cardiomyopathy if given early in the infectious period, although more studies are needed to determine its mechanism and efficacy.
Resumo:
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.
Resumo:
Visual information is vital for fast and accurate hand movements. It has been demonstrated that allowing free eye movements results in greater accuracy than when the eyes maintain centrally fixed. Three explanations as to why free gaze improves accuracy are: shifting gaze to a target allows visual feedback in guiding the hand to the target (feedback loop), shifting gaze generates ocular-proprioception which can be used to update a movement (feedback-feedforward), or efference copy could be used to direct hand movements (feedforward). In this experiment we used a double-step task and manipulated the utility of ocular-proprioceptive feedback from eye to head position by removing the second target during the saccade. We confirm the advantage of free gaze for sequential movements with a double-step pointing task and document eye-hand lead times of approximately 200 ms for both initial movements and secondary movements. The observation that participants move gaze well ahead of the current hand target dismisses foveal feedback as a major contribution. We argue for a feedforward model based on eye movement efference as the major factor in enabling accurate hand movements. The results with the double-step target task also suggest the need for some buffering of efference and ocular-proprioceptive signals to cope with the situation where the eye has moved to a location ahead of the current target for the hand movement. We estimate that this buffer period may range between 120 and 200 ms without significant impact on hand movement accuracy.
Resumo:
Military doctrine is one of the conceptual components of war. Its raison d’être is that of a force multiplier. It enables a smaller force to take on and defeat a larger force in battle. This article’s departure point is the aphorism of Sir Julian Corbett, who described doctrine as ‘the soul of warfare’. The second dimension to creating a force multiplier effect is forging doctrine with an appropriate command philosophy. The challenge for commanders is how, in unique circumstances, to formulate, disseminate and apply an appropriate doctrine and combine it with a relevant command philosophy. This can only be achieved by policy-makers and senior commanders successfully answering the Clausewitzian question: what kind of conflict are they involved in? Once an answer has been provided, a synthesis of these two factors can be developed and applied. Doctrine has implications for all three levels of war. Tactically, doctrine does two things: first, it helps to create a tempo of operations; second, it develops a transitory quality that will produce operational effect, and ultimately facilitate the pursuit of strategic objectives. Its function is to provide both training and instruction. At the operational level instruction and understanding are critical functions. Third, at the strategic level it provides understanding and direction. Using John Gooch’s six components of doctrine, it will be argued that there is a lacunae in the theory of doctrine as these components can manifest themselves in very different ways at the three levels of war. They can in turn affect the transitory quality of tactical operations. Doctrine is pivotal to success in war. Without doctrine and the appropriate command philosophy military operations cannot be successfully concluded against an active and determined foe.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates,with the scaling factor chosen based on automatic gain control. We consider equal power allocation (EPA) across the relays, as well as the optimal power allocation (OPA) strategy given access to instantaneous channel state information (CSI). For EPA, we derive an upper bound on the pairwise-error-probability (PEP), from which we prove that full diversity is achieved in TWRNs. This result is in contrast to one-way relay networks, in which case a maximum diversity order of only unity can be obtained. When instantaneous CSI is available at the relays, we show that the OPA which minimizes the conditional PEP of the worse link can be cast as a generalized linear fractional program, which can be solved efficiently using the Dinkelback-type procedure.We also prove that, if the sum-power of the relay terminals is constrained, then the OPA will activate at most two relays.
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.