33 resultados para Acquiring
em CentAUR: Central Archive University of Reading - UK
Resumo:
We are experiencing an explosion of knowledge with relevance to conserving biodiversity and protecting the environment necessary to sustain life on earth. Many science disciplines are involved in generating this ne, knowledge and real progress can be made when scientists collaborate across disciplines to generate both macro- and micro-environmental knowledge and then communicate and interact with specialists in sociology, economics and public policy. An important requirement is that the often complex scientific concepts and their voluminous supporting data are managed in such ways as to make them accessible across the many specializations involved. Horticultural science has much to contribute to the knowledge base for environmental conservation. While it seems that production horticulture has been slow to embrace knowledge and concepts that would reduce the heavy reliance on agricultural chemicals, the use of peat as a growing medium, and lead to more sustainable use of water and other resources, environmental horticulture is providing valuable opportunities to rescue or protect endangered species, educate the public about plants and plant science, and demonstrate environmental stewardship and sustainable production practices. Likewise, social horticulture is drawing, attention to the many contributions of horticultural foods and parks and gardens to human health and welfare. Overall, horticulture has a vital role to play in integrating, knowledge from other scientific, social, economic and political disciplines.
Resumo:
In life, we must often learn new associations to people, places, or things we already know. The current fMRI study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral objects and encoding tasks. This initial learning phase was followed by a memory updating phase, during which participants learned picture-location associations for old pictures (i.e., pictures previously associated with other neutral stimuli) and new pictures (i.e., pictures not seen in the first phase). There was greater frontopolar/orbito-frontal (OFC) activity when people learned picture–location associations for old negative pictures than for new negative pictures, but frontopolar OFC activity did not significantly differ during learning locations of old versus new neutral pictures. In addition, frontopolar activity was more negatively correlated with the amygdala when participants learned picture–location associations for old negative pictures than for new negative or old neutral pictures. Past studies revealed that the frontopolar OFC allows for updating the affective values of stimuli in reversal learning or extinction of conditioning [e.g., Izquierdo, A., & Murray, E. A. Opposing effects of amygdala and orbital PFC lesions on the extinction of instrumental responding in macaque monkeys. European Journal of Neuroscience, 22, 2341–2346, 2005]; our findings suggest that it plays a more general role in updating associations to emotional stimuli.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modelling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
This study compares associations between demographic profiles, long bone lengths, bone mineral content, and frequencies of stress indicators in the preadult populations of two medieval skeletal assemblages from Denmark. One is from a leprosarium, and thus probably represents a disadvantaged group (Naestved). The other comes from a normal, and in comparison rather privileged, medieval community (AEbelholt). Previous studies of the adult population indicated differences between the two skeletal collections with regard to mortality, dental size, and metabolic and specific infectious disease. The two samples were analyzed against the view known as the "osteological paradox" (Wood et al. [1992] Curr. Anthropol. 33:343-370), according to which skeletons displaying pathological modification are likely to represent the healthier individuals of a population, whereas those without lesions would have died without acquiring modifications as a result of a depressed immune response. Results reveal that older age groups among the preadults from Naestved are shorter and have less bone mineral content than their peers from AEbelholt. On average, the Naestved children have a higher prevalence of stress indicators, and in some cases display skeletal signs of leprosy. This is likely a result of the combination of compromised health and social disadvantage, thus supporting a more traditional interpretation. The study provides insights into the health of children from two different biocultural settings of medieval Danish society and illustrates the importance of comparing samples of single age groups.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modeling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
Our understanding of the evolution of microbial pathogens has been advanced by the discovery of "islands" of DNA that differ from core genomes and contain determinants of virulence [1, 2]. The acquisition of genomic islands (GIs) by horizontal gene transfer (HGT) is thought to have played a major role in microbial evolution. There are, however, few practical demonstrations of the acquisition of genes that control virulence, and, significantly, all have been achieved outside the animal or plant host. Loss of a GI from the bean pathogen Pseudomonas syringae pv. phaseolicola (Pph) is driven by exposure to the stress imposed by the plant's resistance response [3]. Here, we show that the complete episomal island, which carries pathogenicity genes including the effector avrPphB, transfers between strains of Pph by transformation in planta and inserts at a specific att site in the genome of the recipient. Our results show that the evolution of bacterial pathogens by HGT may be achieved via transformation, the simplest mechanism of DNA exchange. This process is activated by exposure to plant defenses, when the pathogen is in greatest need of acquiring new genetic traits to alleviate the antimicrobial stress imposed by plant innate immunity [4].
Resumo:
Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits(1-3) but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth(4-7). Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land(4,5,8), extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.
Resumo:
Purpose: Acquiring details of kinetic parameters of enzymes is crucial to biochemical understanding, drug development, and clinical diagnosis in ocular diseases. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. Methods: We have developed Bayesian utility functions to minimise kinetic parameter variance involving differentiation of model expressions and matrix inversion. These have been applied to the simple kinetics of the enzymes in the glyoxalase pathway (of importance in posttranslational modification of proteins in cataract), and the complex kinetics of lens aldehyde dehydrogenase (also of relevance to cataract). Results: Our successful application of Bayesian statistics has allowed us to identify a set of rules for designing optimum kinetic experiments iteratively. Most importantly, the distribution of points in the range is critical; it is not simply a matter of even or multiple increases. At least 60 % must be below the KM (or plural if more than one dissociation constant) and 40% above. This choice halves the variance found using a simple even spread across the range.With both the glyoxalase system and lens aldehyde dehydrogenase we have significantly improved the variance of kinetic parameter estimation while reducing the number and costs of experiments. Conclusions: We have developed an optimal and iterative method for selecting features of design such as substrate range, number of measurements and choice of intermediate points. Our novel approach minimises parameter error and costs, and maximises experimental efficiency. It is applicable to many areas of ocular drug design, including receptor-ligand binding and immunoglobulin binding, and should be an important tool in ocular drug discovery.
Resumo:
In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This article explores whether infants are able to learn words as rapidly as has been reported for preschoolers. Sixty-four infants aged 1;6 were taught labels for either two moving images or two still images. Each image-label pair was presented three times, after which comprehension was assessed using an adaptation of the intermodal preferential looking paradigm. Three repetitions of each label were found to be sufficient for learning to occur, fewer than has previously been reported for infants under two years. Moreover, contrary to a previous finding, learning was equally rapid for infants who were taught labels for moving versus still images. The findings indicate that infants in the early stages of acquiring a vocabulary learn new word-referent associations with ease, and that the learning conditions that allow such learning are less restricted that was previously believed.
Resumo:
The knowledge economy offers opportunity to a broad and diverse community of information systems users to efficiently gain information and know-how for improving qualifications and enhancing productivity in the work place. Such demand will continue and users will frequently require optimised and personalised information content. The advancement of information technology and the wide dissemination of information endorse individual users when constructing new knowledge from their experience in the real-world context. However, a design of personalised information provision is challenging because users’ requirements and information provision specifications are complex in their representation. The existing methods are not able to effectively support this analysis process. This paper presents a mechanism which can holistically facilitate customisation of information provision based on individual users’ goals, level of knowledge and cognitive styles preferences. An ontology model with embedded norms represents the domain knowledge of information provision in a specific context where users’ needs can be articulated and represented in a user profile. These formal requirements can then be transformed onto information provision specifications which are used to discover suitable information content from repositories and pedagogically organise the selected content to meet the users’ needs. The method is provided with adaptability which enables an appropriate response to changes in users’ requirements during the process of acquiring knowledge and skills.
Resumo:
Background: Several authors have highlighted areas of overlap in symptoms and impairment among children with autism spectrum disorder (ASD) and children with specific language impairment (SLI). By contrast, loss of language and broadly defined regression have been reported as relatively specific to autism. We compare the incidence of language loss and language progression of children with autism and SLI. Methods: We used two complementary studies: the Special Needs and Autism Project (SNAP) and the Manchester Language Study (MLS) involving children with SLI. This yielded a combined sample of 368 children (305 males and 63 females) assessed in late childhood for autism, history of language loss, epilepsy, language abilities and nonverbal IQ. Results: language loss occurred in just 1% of children with SLI but in 15% of children classified as having autism or autism spectrum disorder. Loss was more common among children with autism rather than milder ASD and is much less frequently reported when language development is delayed. For children who lost language skills before their first phrases, the phrased speech milestone was postponed but long-term language skills were not significantly lower than children with autism but without loss. For the few who experienced language loss after acquiring phrased speech, subsequent cognitive performance is more uncertain. Conclusions: Language loss is highly specific to ASD. The underlying developmental abnormality may be more prevalent than raw data might suggest, its possible presence being hidden for children whose language development is delayed.
Resumo:
Background: Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders. Methodology/Principal Findings: In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate. Conclusions/Significance: A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.