2 resultados para Abstraction decomposition space
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
The Environmental Data Abstraction Library provides a modular data management library for bringing new and diverse datatypes together for visualisation within numerous software packages, including the ncWMS viewing service, which already has very wide international uptake. The structure of EDAL is presented along with examples of its use to compare satellite, model and in situ data types within the same visualisation framework. We emphasize the value of this capability for cross calibration of datasets and evaluation of model products against observations, including preparation for data assimilation.