73 resultados para Absolute Capacity
em CentAUR: Central Archive University of Reading - UK
Resumo:
There is a recent interest to use inorganic-based magnetic nanoparticles as a vehicle to carry biomolecules for various biophysical applications, but direct attachment of the molecules is known to alter their conformation leading to attenuation in activity. In addition, surface immobilization has been limited to monolayer coverage. It is shown that alternate depositions of negatively charged protein molecules, typically bovine serum albumin (BSA) with a positively charged aminocarbohydrate template such as glycol chitosan (GC) on magnetic iron oxide nanoparticle surface as a colloid, are carried out under pH 7.4. Circular dichroism (CD) clearly reveals that the secondary structure of the entrapped BSA sequential depositions in this manner remains totally unaltered which is in sharp contrast to previous attempts. Probing the binding properties of the entrapped BSA using small molecules (Site I and Site II drug compounds) confirms for the first time the full retention of its biological activity as compared with native BSA, which also implies the ready accessibility of the entrapped protein molecules through the porous overlayers. This work clearly suggests a new method to immobilize and store protein molecules beyond monolayer adsorption on a magnetic nanoparticle surface without much structural alteration. This may find applications in magnetic recoverable enzymes or protein delivery.
Resumo:
Diffuse reflectance spectroscopy (DRS) is increasingly being used to predict numerous soil physical, chemical and biochemical properties. However, soil properties and processes vary at different scales and, as a result, relationships between soil properties often depend on scale. In this paper we report on how the relationship between one such property, cation exchange capacity (CEC), and the DRS of the soil depends on spatial scale. We show this by means of a nested analysis of covariance of soils sampled on a balanced nested design in a 16 km × 16 km area in eastern England. We used principal components analysis on the DRS to obtain a reduced number of variables while retaining key variation. The first principal component accounted for 99.8% of the total variance, the second for 0.14%. Nested analysis of the variation in the CEC and the two principal components showed that the substantial variance components are at the > 2000-m scale. This is probably the result of differences in soil composition due to parent material. We then developed a model to predict CEC from the DRS and used partial least squares (PLS) regression do to so. Leave-one-out cross-validation results suggested a reasonable predictive capability (R2 = 0.71 and RMSE = 0.048 molc kg− 1). However, the results from the independent validation were not as good, with R2 = 0.27, RMSE = 0.056 molc kg− 1 and an overall correlation of 0.52. This would indicate that DRS may not be useful for predictions of CEC. When we applied the analysis of covariance between predicted and observed we found significant scale-dependent correlations at scales of 50 and 500 m (0.82 and 0.73 respectively). DRS measurements can therefore be useful to predict CEC if predictions are required, for example, at the field scale (50 m). This study illustrates that the relationship between DRS and soil properties is scale-dependent and that this scale dependency has important consequences for prediction of soil properties from DRS data
Resumo:
Data for water vapor adsorption and evaporation are presented for a bare soil (sandy loam, clay content 15%) in a southern Spanish olive grove. Water losses and gains were measured using eight high-precision minilysimeters, placed around an olive tree, which had been irrigated until the soil reached field capacity (similar to 0.22 m(3) m(-3)). They were subsequently left to dry for 10 days. A pair of lysimeters was situated at each of the main points of the compass (N, E, S, W), at a distance of 1 m (the inner set of lysimeters; ILS) and 2 m (the outer set of lysimeters; OLS), respectively, from the tree trunk. Distinct periods of moisture loss (evaporation) and moisture gain (vapor adsorption) could be distinguished for each day. Vapor adsorption often started just after noon and generally lasted until the (early) evening. Values of up to 0.7 mm of adsorbed water per day were measured. Adsorption was generally largest for the OLS (up to 100% more on a daily basis), and increased during the dry down. This was mainly the result of lower OLS surface soil moisture contents (period-average absolute difference similar to 0.005 m(3) m(-3)), as illustrated using various analyses employing a set of micrometeorological equations describing the exchange of water vapor between bare soil and the atmosphere. These analyses also showed that the amount of water vapor adsorbed by soils is very sensitive to changes in atmospheric forcing and surface variables. The use of empirical equations to estimate vapor adsorption is therefore not recommended.
Resumo:
Consumption of green leafy vegetables is associated with reduced risk of several types of cancer and cardiovascular disease. These beneficial effects are attributed to a range of phytochemicals including flavonoids and glucosinolates, both of which are found in high levels in Brassicaceous crops. Rocket is the general name attributed to cultivars of Eruca sativa and Diplotaxis tenufolia, known as salad rocket and wild rocket, respectively. We have shown that different light levels during the cultivation period of these crops have a significant impact on the levels of flavonoids present in the crop at harvest, with over 15-fold increase achieved in quercetin, isorhamnetin, and cyanidin in high light conditions. Postharvest storage further affects the levels of both flavonoids and glucosinolates, with cyanidin increasing during shelf life and some glucosinolates, such as glucoiberverin, being reduced over the same storage period. In vitro assays using human colon cell lines demonstrate that glucosinolate-rich extracts of Eruca sativa cv. Sky, but not Diplotaxis tenufolia cv. Voyager, confer significant resistance to oxidative stress on the cells, which is indicative of the chemoprotective properties of the leaves from this species. Our findings indicate that both pre and postharvest environment and genotypic selection, when developing new lines of Brassicaceous vegetables, are important considerations with the goal of improving human nutrition and health.
Resumo:
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z ¼ 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z ¼ 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.
Resumo:
Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.
Resumo:
A series of amphiphilic copolymers were synthesized by free-radical copolymerization of N-vinylpyrrolidone (NVP) with vinyl propyl ether (VPE), and the structure of the copolymers was characterized by elemental analysis and gel permeation chromatography. The reactivity of VPE in copolymerization was found to be significantly lower than the reactivity of NVP, which resulted in a decrease of copolymers’ yields and molecular weights with higher content of VPE in the feed mixture. An investigation of the behavior of the copolymers in aqueous solutions at different temperatures by dynamic light scattering revealed the presence of lower critical solution temperature, which depending on the content of VPE ranged within 23−38 °C. Aqueous solutions of these copolymers were studied by fluorescent spectroscopy with pyrene as a polarity probe to reveal the formation of hydrophobic domains. The copolymers were found to be useful for enhancing the solubility of riboflavin in water.
Resumo:
Anhedonia, the loss of pleasure or interest in previously rewarding stimuli, is a core feature of major depression. While theorists have argued that anhedonia reflects a reduced capacity to experience pleasure, evidence is mixed as to whether anhedonia is caused by a reduction in hedonic capacity. An alternative explanation is that anhedonia is due to the inability to sustain positive affect across time. Using positive images, we used an emotion regulation task to test whether individuals with depression are unable to sustain activation in neural circuits underlying positive affect and reward. While up-regulating positive affect, depressed individuals failed to sustain nucleus accumbens activity over time compared with controls. This decreased capacity was related to individual differences in self-reported positive affect. Connectivity analyses further implicated the fronto-striatal network in anhedonia. These findings support the hypothesis that anhedonia in depressed patients reflects the inability to sustain engagement of structures involved in positive affect and reward.
Resumo:
Forecasting the effects of stressors on the dynamics of natural populations requires assessment of the joint effects of a stressor and population density on the population response. The effects can be depicted as a contour map in which the population response, here assessed by Population growth rate, varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. We present the first complete map of this type using as our model Folsomia candida exposed to five different concentrations of the widespread anthelmintic veterinary medicine ivermectin in replicated microcosm experiments lasting 49 days. The concentrations of ivermectin in yeast were 0.0, 6.8 28.83 66.4 and 210.0 mg/L wet weight. Increasing density and chemical concentration both significantly reduced the population growth rate of Folsomia candida, in part through effects on food consumption and fecundity. The interaction between density and ivermectin concentration was "less-than-additive," implying that at high density populations were able to compensate for the effects of the chemical. This result demonstrates that regulatory protocols carried out at low density (as in most past experiments) may seriously overestimate effects in the field, where densities are locally high and populations are resource limited (e.g., in feces of livestock treated with ivermectin).