9 resultados para Abrasão dental por ar
em CentAUR: Central Archive University of Reading - UK
Resumo:
In the U.K., dental students require to perform training and practice on real human tissues at the very early stage of their courses. Currently, the human tissues, such as decayed teeth, are mounted in a human head like physical model. The problems with these models in teaching are; (1) every student operates on tooth, which are always unique; (2) the process cannot be recorded for examination purposes and (3) same training are not repeatable. The aim of the PHATOM Project is to develop a dental training system using Haptic technology. This paper documents the project background, specification, research and development of the first prototype system. It also discusses the research in the visual display, haptic devices and haptic rendering. This includes stereo vision, motion parallax, volumetric modelling, surface remapping algorithms as well as analysis design of the system. A new volumetric to surface model transformation algorithm is also introduced. This paper includes the future work on the system development and research.
Resumo:
A previously undescribed filamentous, beaded, Gram-positive, rod-shaped bacterium was isolated from pus of a human dental abscess. Based on its cellular morphology end the results of biochemical testing the organism was tentatively identified as a member of the genus Actinomyces, but it did not correspond to any currently recognized species of this genus. Comparative 16S rRNA gene sequencing studies showed the bacterium represents a distinct subline within the genus Actinomyces, clustering within a group of species that includes Actinomyces bovis, the type species of the genus. Sequence divergence values of >8% with other recognized species within this phylogenetic group clearly demonstrated that the organism represents a hitherto unknown species. Based on biochemical and molecular phylogenetic evidence, it is proposed that the unidentified organism recovered from a dental abscess be classified as a novel species, Actinomyces dentalis sp. nov. The type strain is R18165(T) (= CCUG 48064(T) = CIP 108337(T)).
Resumo:
A previously undescribed Actinomyces-like bacterium was isolated from a human dental abscess. Based on its cellular morphology and the results of biochemical testing the organism was tentatively identified as a member of the genus Actinomyces, but it did not correspond to any currently recognized species of this genus. Comparative 16S rRNA gene sequencing studies showed the bacterium represents a hitherto unknown subline within the genus Actinomyces, clustering within a group of species, which includes Actinomyces bovis, the type species of the genus. Based on biochemical and molecular phylogenetic evidence, it is proposed that the unknown organism recovered from a dental abscess be classified as a new species, Actinomyces oricola sp. nov. The type strain of Actinomyces oricola is R5292(T) (=CCUG 46090(T)=CIP 107639(T)).
Resumo:
This paper presents a novel design of a virtual dental training system (hapTEL) using haptic technology. The system allows dental students to learn and practice procedures such as dental drilling, caries removal and cavity preparation for tooth restoration. This paper focuses on the hardware design, development and evaluation aspects in relation to the dental training and educational requirements. Detailed discussions on how the system offers dental students a natural operational position are documented. An innovative design of measuring and connecting the dental tools to the haptic device is also shown. Evaluation of the impact on teaching and learning is discussed.
Resumo:
A series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(C CAr)(L-2)Cp'] (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)(2), Cp' = Cp; L-2 = dppe; Cp' = Cp*) have been examined using electrochemical and spectroelectrochemical methods. One-electron oxidation of these complexes gave the corresponding radical cations [Ru(C CAr)(L2)Cp'](+). Those cations based on Ru(dppe)Cp*, or which feature a para-tolyl acetylide substituent, are more chemically robust than examples featuring the Ru(PPh3)(2)Cp moiety, permitting good quality UV-Vis-NIR and IR spectroscopic data to be obtained using spectroelectrochemical methods. On the basis of TD DFT calculations, the low energy (NIR) absorption bands in the experimental electronic spectra for most of these radical cations are assigned to transitions between the beta-HOSO and beta-LUSO, both of which have appreciable metal d and ethynyl pi character. However, the large contribution from the anthryl moiety to the frontier orbitals of [Ru(C CC14H9)(L2)CP'](+) suggests compounds containing this moiety should be described as metal-stabilised anthryl radical cations.
Resumo:
Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.
Resumo:
The adsorption of gases on microporous carbons is still poorly understood, partly because the structure of these carbons is not well known. Here, a model of microporous carbons based on fullerene- like fragments is used as the basis for a theoretical study of Ar adsorption on carbon. First, a simulation box was constructed, containing a plausible arrangement of carbon fragments. Next, using a new Monte Carlo simulation algorithm, two types of carbon fragments were gradually placed into the initial structure to increase its microporosity. Thirty six different microporous carbon structures were generated in this way. Using the method proposed recently by Bhattacharya and Gubbins ( BG), the micropore size distributions of the obtained carbon models and the average micropore diameters were calculated. For ten chosen structures, Ar adsorption isotherms ( 87 K) were simulated via the hyper- parallel tempering Monte Carlo simulation method. The isotherms obtained in this way were described by widely applied methods of microporous carbon characterisation, i. e. Nguyen and Do, Horvath - Kawazoe, high- resolution alpha(a)s plots, adsorption potential distributions and the Dubinin - Astakhov ( DA) equation. From simulated isotherms described by the DA equation, the average micropore diameters were calculated using empirical relationships proposed by different authors and they were compared with those from the BG method.
Resumo:
Background Childhood dental anxiety is very common, with 10–20 % of children and young people reporting high levels of dental anxiety. It is distressing and has a negative impact on the quality of life of young people and their parents as well as being associated with poor oral health. Affected individuals may develop a lifelong reliance on general anaesthetic or sedation for necessary dental treatment thus requiring the support of specialist dental services. Children and young people with dental anxiety therefore require additional clinical time and can be costly to treat in the long term. The reduction of dental anxiety through the use of effective psychological techniques is, therefore, of high importance. However, there is a lack of high-quality research investigating the impact of cognitive behavioural therapy (CBT) approaches when applied to young people’s dental anxiety. Methods/design The first part of the study will develop a profile of dentally anxious young people using a prospective questionnaire sent to a consecutive sample of 100 young people referred to the Paediatric Dentistry Department, Charles Clifford Dental Hospital, in Sheffield. The second part will involve interviewing a purposive sample of 15–20 dental team members on their perceptions of a CBT self-help resource for dental anxiety, their opinions on whether they might use such a resource with patients, and their willingness to recruit participants to a future randomised controlled trial (RCT) to evaluate the resource. The third part of the study will investigate the most appropriate outcome measures to include in a trial, the acceptability of the resource, and retention and completion rates of treatment with a sample of 60 dentally anxious young people using the CBT resource. Discussion This study will provide information on the profile of dentally anxious young people who could potentially be helped by a guided self-help CBT resource. It will gain the perceptions of dental care team members of guided self-help CBT for dental anxiety in young people and their willingness to recruit participants to a trial. Acceptability of the resource to participants and retention and completion rates will also be investigated to inform a future RCT.