4 resultados para Abnormality Detection

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ovarian cancer is characterized by vague, non-specific symptoms, advanced stage at diagnosis and poor overall survival. A nested case control study was undertaken on stored serial serum samples from women who developed ovarian cancer and healthy controls (matched for serum processing and storage conditions as well as attributes such as age) in a pilot randomized controlled trial of ovarian cancer screening. The unique feature of this study is that the women were screened for up to 7 years. The serum samples underwent prefractionation using a reversed-phase batch extraction protocol prior to MALDI-TOF MS data acquisition. Our exploratory analysis shows that combining a single MS peak with CA125 allows statistically significant discrimination at the 5% level between cases and controls up to 12 months in advance of the original diagnosis of ovarian cancer. Such combinations work much better than a single peak or CA125 alone. This paper demonstrates that mass spectra from the low molecular weight serum proteome carry information useful for early detection of ovarian cancer. The next step is to identify the specific biomarkers that make early detection possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the issue of activity understanding from video and its semantics-rich description. A novel approach is presented where activities are characterised and analysed at different resolutions. Semantic information is delivered according to the resolution at which the activity is observed. Furthermore, the multiresolution activity characterisation is exploited to detect abnormal activity. To achieve these system capabilities, the focus is given on context modelling by employing a soft computing-based algorithm which automatically enables the determination of the main activity zones of the observed scene by taking as input the trajectories of detected mobiles. Such areas are learnt at different resolutions (or granularities). In a second stage, learned zones are employed to extract people activities by relating mobile trajectories to the learned zones. In this way, the activity of a person can be summarised as the series of zones that the person has visited. Employing the inherent soft relation properties, the reported activities can be labelled with meaningful semantics. Depending on the granularity at which activity zones and mobile trajectories are considered, the semantic meaning of the activity shifts from broad interpretation to detailed description.Activity information at different resolutions is also employed to perform abnormal activity detection.