18 resultados para AZA-ARENES
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this work we demonstrate the value of performing a Hetero Diels-Alder reaction (HDAR) between Danishefsky’s diene and a range of aldehydes or imines, under microwave irradiation. By using a range of aldehydes and imines, including those derived from carbohydrates, access to functionalised 2,3-dihydro-4H-pyran-4-ones or 2,3-dihydro-4-pyridinones in good to excellent synthetic yields is possible. A particular strength of the methodology is its ability to access mimetics of C-linked disaccharides and C-linked aza disaccharides, targets of current therapeutic interest, in a rapid, convenient and diastereoselective manner. The effect of high pressure on the HDARs involving carbohydrate derived aldehydes and imines is also explored, with enhancement in yields occurring for the aldehyde substrates. Finally, HDARs using carbohydrate derived ketones, enones and enals are described under a range of conditions. Optimum results were obtained under high pressure conditions, with highly functionalized carbohydrate derivatives being afforded, in good yields, in this way.
Resumo:
(R)-3-Arylalanines may be prepared in high enantiomeric purity from N-dpp imines by a four-step reaction sequence involving asymmetric aza-Darzens reaction, dephosphinylation, hydrogenolysis and hydrolysis. The amino acids thus obtained were of >95% enantiomeric purity.
Resumo:
The development of new methods for the efficient synthesis of aziridines has been of considerable interest to researchers for more than 60 years, but no single method has yet emerged as uniformly applicable, especially for asymmetric synthesis of chiral aziridines. One method which has been intensely examined and expanded of late involves the nucleophilic addition to imines by anions bearing a-leaving groups; by analogy with the glycidate epoxide synthesis, these processes are often described as "aza-Darzens reactions". This Microreview gives a summary of the area, with a focus on contemporary developments. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
The aza-Darzens ('ADZ') reactions of N-diphenylphosphinyl ('N-Dpp') imines with chiral enolates derived from N-bromoacetyl 2S-2,10-camphorsultam proceed in generally good yield to give N-diphenylphosphinyl aziridinoyl sultams. However, the stereoselectivity of the reaction is dependent upon the structure of the imine substituent: when the chiral enolate was reacted with arylimines substituted in the ortho-position, mixtures of cis- and trans-2'R,3'R-aziridines were obtained, often with a complete selectivity in favour of the trans-isomer. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Theaza-Darzens ('ADZ') reactions off-diphenylphosphinyl (W-Dpp') imines with chiral enolates derived from oxazolidinones and camphorsultam have been Studied. Whilst oxazolidinone enolates reacted poorly in terms of aziridination, the use of the chiral enolate derived from both antipodes of N-bromoacetyl 2, 10-camphorsultam, 2R-(5) and 2S-(5), with N-diphehenylphosphinyl aryl and tert-butylimines proceeded in generally good yield to give, respectively, (2'R,3'R)- or (2'S,3'S)-cis-N-diphenylphosphinyl aziridinoyl sultams of high de. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Second stage juveniles of Meloidogyne javanica were exposed to aqueous extracts of neem crude formulations (leaves and cake) at 10%, 5%, and 2.5% w/v and a refined product, Aza at 0.1% w/v. The 10% extracts of neem leaf and cake caused 83% and 85% immobility and 35% and 28% mortality, respectively. Aza caused neither immobility or mortality of juveniles. When egg masses were placed in extracts of these formulations, hatching did not occur at all the concentrations (10%, 5%, 2.5% and 1.25% w/v) of the crude formulations. When the treated egg masses were returned to water, the eggs resumed hatching. Aza did not affect the nematode hatching. In glasshouse experiments, soil application of neem formulations significantly reduced the invasion of tomato roots by root-knot nematodes but once the nematodes managed to invade them, no effect detected on their development. Soil applications of Aza at 0.05% and 0.1% w/v significantly reduced the invasion and delayed development of nematodes within tomato roots whereas 0.025% did not. There were significantly fewer egg masses on tomato roots exposed to single egg mass in neem amended soil as compared to control. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Neem leaves, neem cake (a by-product left after the extraction of oil from neem seed) and a commercially refined product aza (azadirachtin) extracted from seed were evaluated. Aqueous extracts of crude neem formulations used as a seedling dip treatment significantly reduced the number of females and egg masses in roots whereas the refined one did not. A split-root technique was used to demonstrate the translocation of active compounds within a plant and their subsequent effect on the development of nematodes. When applied to the root portion all formulations significantly reduced the number of egg masses and eggs per egg mass. Whereas on the untreated root portion, neem cake at 3% w/w and aza at 0.1% w/w significantly reduced the number of egg masses as compared with neem leaves at 3% w/w, aza at 0.05% and control. All the neern formulations significantly reduced the number of eggs per egg mass on' the untreated root portion. The effect of neem leaves and cake on the development of root-knot nematodes was tested at 2, 4, 6, 8, and 16 weeks after their application to soil. Even after 16 weeks all the treatments significantly reduced the galling index and number of egg masses but their effectiveness declined over time. After storing neem leaves, cake and aza for 8 months under ambient conditions the efficacy of neem leaves and aza, against root-knot nematodes, remained stable whereas that of cake declined. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Two types of neem formulations, crude and refined, were tested. The crude form was neem leaves and neem cakes (a by-product left after the extraction of oil from neem seed) and one of the neem-refined products was "aza". The protective and curative soil application of these formulations significantly reduced the number of egg masses and eggs per egg mass on tomato roots. Protective application of neem crude formulations (leaves and cake) did not reduce the invasion of juveniles whereas aza at 0.1% w/w did. Curative application of neem formulations significantly reduced the number of egg masses and eggs per egg mass as compared with the control. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Air-dried and 3 mm pore size sieved soil was amended with neem crude formulations (leaves and cake) @ 3% w/w and a refined product, aza @ 0.05 and 0.1 w/w. Three days after treatment, 500 eggs of M. javanica held in 2 ml water were added in each dish. In another experiment, soil was amended with neem crude formulations @ 10. 5, 2.5 and 1% w/w and refined formulation aza @ 0.025, 0.05, 0.1 and 0.5% w/w. Three days after amendment 1000 plus minus 21 freshly hatched J2 held in 3 ml water were added to the amended soil. Untreated soil was kept as control. Comparison of treatments means showed that all the neem formulations caused significant reduction of hatching. Neem crude formulations were more effective in reducing hatching as compared to commercial product aza. Among the crude formulations, neem leaves were most effective in reducing hatching. In other experiment all the doses of neem crude and refined formulations differed significantly with control in reducing the mobility of juveniles. It was observed that by increasing the dose of the formulations the mobility was reduced accordingly.
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Columnar mesophases based on alternating triphenylene and hexaphenyltriphenylene moieties are exceptionally stable and able to accommodate bulky side-chain substituents within the alkyl chain continuum between the columns. This paper presents a system in which the triphenylene bears a fullerene on its side-chain and the hexaphenyltriphenylene equivalent is the aza-derivative hexakis(4-nonylphenyl)dipyrazino[2,3-f : 2'3'-h] quinoxalene, PDQ9. The mesophase formed was identified as hexagonal columnar (Col(h)) by X-ray diffraction (a = 25.2 angstrom and c = 3.5 angstrom) but, in addition to the expected peaks, there is indication of a two-dimensional hexagonal superlattice with d-spacing 59 angstrom. This superlattice is believed to arise from ordering of the fullerenes within the liquid crystal matrix. It can be explained on the assumption that, to maximise fullerene-fullerene contact, the fullerenes form chains which wrap around the central column in every group of seven columns of the triphenylene : PDQ9 Col(h) array.
Resumo:
Cyclocondensations of aromatic diamines with 1,1'-bis(2,4-dinitrophenyl)-4,4'-bipyridinium salts afford doubly or quadruply charged, macrocyclic, N,N'-diarylbipyridinium cations. These are tolerant of a wide range of acids, bases, and nucleophiles, although they appear to undergo reversible, one-electron reduction by tertiary amines. Single-crystal X-ray analysis demonstrates the presence of a macrocycle conformation in which the 4,4'-bipyridinium and 4,4'-biphenylenedisulfonyl residues are suitably spaced and aligned for complexation with pi-donor arenes, and NMR studies in solution indeed confirm binding to 1,5-bis[hydroxy(ethoxy)ethoxy]naphthalene.
Resumo:
Molecular modelling studies have been carried out on two bis(calix[4]diqu(inone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH2)(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na+, K+, Rb+, and Cs+ in dmso solution. Conformational. analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion, of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb+ approximate to K+ > Cs+ >> Na+, which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs+ and K+ complexes is only 0.60, showing that 1 has only a slight preference for K+. For the larger receptor 2, which is better suited to metal complexation, the binding affinity follows the pattern Cs+ >> Rb+ >> K+ >> Na+, with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.
Resumo:
Halo functionalisation of calix[4] tubes has been investigated through both derivatisation of individual calix[4]arenes and calix[4] tubes, using classical synthetic methods, to allow preparation of a series of novel derivatives. The solution and solid state properties are in accordance with the constituent calix[4] arenes adopting flattened cone arrangements which on complexation with potassium simplify to a regular cone. Electrospray and H-1 NMR studies, combined with molecular modelling have been used to ascertain the metal binding of this new series of cryptand like ionophores, demonstrating their retained selectivity for binding potassium over other Group 1 metals and the dependence on counter anion in the weak binding of silver.
Resumo:
A new class of ionophore consisting of two calix[4]arene units linked through the lower rim by two ethylene chains, in combination with propyl ether and phenolic functional groups, has been developed. These calix[4]semitube molecules exhibit remarkable selectivity and fast complexation kinetics for potassium over all Group 1 metal cations. Molecular modelling studies, using structural models derived from crystallographic data, suggest the potassium cation is complexed by a horizontal, side-on route and not through the calix[4]arene annulus. The length of the bridging alkylene chain between the respective calix[4]arenes of the semitube structure dictates the strength and selectivity of alkali metal cation binding.