10 resultados para ATLAS-MPX

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Atlas presents statistical analyses of the simulations submitted to the Aqua-Planet Experiment (APE) data archive. The simulations are from global Atmospheric General Circulation Models (AGCM) applied to a water-covered earth. The AGCMs include ones actively used or being developed for numerical weather prediction or climate research. Some are mature, application models and others are more novel and thus less well tested in Earth-like applications. The experiment applies AGCMs with their complete parameterization package to an idealization of the planet Earth which has a greatly simplified lower boundary that consists of an ocean only. It has no land and its associated orography, and no sea ice. The ocean is represented by Sea Surface Temperatures (SST) which are specified everywhere with simple, idealized distributions. Thus in the hierarchy of tests available for AGCMs, APE falls between tests with simplified forcings such as those proposed by Held and Suarez (1994) and Boer and Denis (1997) and Earth-like simulations of the Atmospheric Modeling Intercomparison Project (AMIP, Gates et al., 1999). Blackburn and Hoskins (2013) summarize the APE and its aims. They discuss where the APE fits within a modeling hierarchy which has evolved to evaluate complete models and which provides a link between realistic simulation and conceptual models of atmospheric phenomena. The APE bridges a gap in the existing hierarchy. The goals of APE are to provide a benchmark of current model behaviors and to stimulate research to understand the cause of inter-model differences., APE is sponsored by the World Meteorological Organization (WMO) joint Commission on Atmospheric Science (CAS), World Climate Research Program (WCRP) Working Group on Numerical Experimentation (WGNE). Chapter 2 of this Atlas provides an overview of the specification of the eight APE experiments and of the data collected. Chapter 3 lists the participating models and includes brief descriptions of each. Chapters 4 through 7 present a wide variety of statistics from the 14 participating models for the eight different experiments. Additional intercomparison figures created by Dr. Yukiko Yamada in AGU group are available at http://www.gfd-dennou.org/library/ape/comparison/. This Atlas is intended to present and compare the statistics of the APE simulations but does not contain a discussion of interpretive analyses. Such analyses are left for journal papers such as those included in the Special Issue of the Journal of the Meteorological Society of Japan (2013, Vol. 91A) devoted to the APE. Two papers in that collection provide an overview of the simulations. One (Blackburn et al., 2013) concentrates on the CONTROL simulation and the other (Williamson et al., 2013) on the response to changes in the meridional SST profile. Additional papers provide more detailed analysis of the basic simulations, while others describe various sensitivities and applications. The APE experiment data base holds a wealth of data that is now publicly available from the APE web site: http://climate.ncas.ac.uk/ape/. We hope that this Atlas will stimulate future analyses and investigations to understand the large variation seen in the model behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The international response to SARS-CoV has produced an outstanding number of protein structures in a very short time. This review summarizes the findings of functional and structural studies including those derived from cryoelectron microscopy, small angle X-ray scattering, NMR spectroscopy, and X-ray crystallography, and incorporates bioinformatics predictions where no structural data is available. Structures that shed light on the function and biological roles of the proteins in viral replication and pathogenesis are highlighted. The high percentage of novel protein folds identified among SARS-CoV proteins is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Reasons for performing study: Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu. Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area. Study design: This study was performed using seven Thoroughbreds in race training at a single time-point. Urine and faecal samples were collected non-invasively and plasma was obtained from samples taken for routine clinical chemistry purposes. Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was achieved via a range of 1D and 2D experiments. Results: A total of 102 metabolites were assigned across the three biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host co-metabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short chain fatty acids were the predominant features identified within this biofluid by 1H-NMR spectroscopy. Conclusions: Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the purposes of metabonomic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional knowledge about medicinal plants from a poorly studied region, the High Atlas in Morocco, is reported here for the first time; this permits consideration of efficacy and safety of current practices whilst highlighting species previously not known to have traditional medicinal use. Our study aims to document local medicinal plant knowledge among Tashelhit speaking communities through ethnobotanical survey, identifying preferred species and new medicinal plant citations and illuminating the relationship between emic and etic ailment classifications. Ethnobotanical data were collected using standard methods and with prior informed consent obtained before all interactions, data were characterized using descriptive indices and medicinal plants and healing strategies relevant to local livelihoods were identified. 151 vernacular names corresponding to 159 botanical species were found to be used to treat 36 folk ailments grouped in 14 biomedical use categories. Thirty-five (22%) are new medicinal plant records in Morocco, and 26 described as used for the first time anywhere. Fidelity levels (FL) revealed low specificity in plant use, particularly for the most commonly reported plants. Most plants are used in mixtures. Plant use is driven by local concepts of disease, including “hot” and “cold” classification and beliefs in supernatural forces. Local medicinal plant knowledge is rich in the High Atlas, where local populations still rely on medicinal plants for healthcare. We found experimental evidence of safe and effective use of medicinal plants in the High Atlas; but we highlight the use of eight poisonous species.