5 resultados para ASTRO-R8

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present invention provides a process comprising substitution of an acceptor molecule comprising a group -XC(O)- wherein X is O, S or NR8, where R8 is C1-6 alkyl, C6-12 aryl or hydrogen, with a nucleophile, wherein the acceptor molecule is cyclised such that said nucleophilic substitution at -XC (O)- occurs without racemisation. This process has particular application for the production of a peptide by extension from the activated carboxy-terminus of an acyl amino acid residue without epimerisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present invention provides a process comprising substitution of an acceptor molecule comprising a group -XC(O)- wherein X is O, S or NR8, where R8 is C1-6 alkyl, C6-12 aryl or hydrogen, with a nucleophile, wherein the acceptor molecule is cyclised such that said nucleophilic substitution at -XC (O)- occurs without racemisation. This process has particular application for the production of a peptide by extension from the activated carboxy-terminus of an acyl amino acid residue without epimerisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, vertical column measurements of (HNO3) above the Arctic Stratospheric Ozone Observatory (AStrO) at Eureka (80N, 86W), Canada, have been made during polar night using lunar spectra recorded with a Fourier Transform Infrared (FTIR) spectrometer, from October 2001 to March 2002. AStrO is part of the primary Arctic station of the Network for the Detection of Stratospheric Change (NDSC). These measurements were compared with FTIR measurements at two other NDSC Arctic sites: Thule, Greenland (76.5N, 68.8W) and Kiruna, Sweden (67.8N, 20.4E). The measurements were also compared with two atmospheric models: the Canadian Middle Atmosphere Model (CMAM) and SLIMCAT. This is the first time that CMAM HNO3 columns have been compared with observations in the Arctic. Eureka lunar measurements are in good agreement with solar ones made with the same instrument. Eureka and Thule HNO3 columns are consistent within measurement error. Differences among HNO3 columns measured at Kiruna and those measured at Eureka and Thule can be explained on the basis of the available sunlight hours and the polar vortex location. The comparison of CMAM HNO3 columns with Eureka and Kiruna data shows good agreement, considering CMAM small inter-annual variability. The warm 2001/02 winter with almost no Polar Stratospheric Clouds (PSCs) makes the comparison of the warm climate version of CMAM with these observations a good test for CMAM under no PSC conditions. SLIMCAT captures the magnitude of HNO3 columns at Eureka, and the day-to-day variability, but generally reports higher HNO3 columns than the CMAM climatological mean columns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We outline our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, Astro- Grid) and the computational grid. We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We present our planned usage of the VOTechBroker in computing a huge number of n–point correlation functions from the SDSS, as well as fitting over a million CMBfast models to the WMAP data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing the traditionally distinct scientific boundaries between astro-particle and atmospheric physics and also requiring understanding of both heliospheric and magnetospheric influences on cosmic rays. Following the paper of Erlykin et al. (2014) we develop further the interpretation of our observed changes in long-wave (LW) radiation, Aplin and Lockwood (2013) by taking account of both cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for, in particular, ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected by AL were not caused by individual cosmic ray primaries – not because it is impossible on energetic grounds, but because events of the required energy are too infrequent for the 12 h_1 rate at which they were seen by the AL experiment. The present paper numerically models the effect of three different scenario changes to the primary GCR spectrum which all reproduce the required magnitude of the effect observed by AL. However, they cannot solely explain the observed delay in the peak effect which, if confirmed, would appear to open up a whole new and interesting area in the study of water oligomers and their effects on LW radiation. We argue that a technical artefact in the AL experiment is highly unlikely and that our initial observations merit both a wide-ranging follow-up experiment and more rigorous, self-consistent, three-dimensional radiative transfer modelling