6 resultados para ASIC
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents the evaluation in power consumption of gated clocks pipelined circuits with different register configurations in Virtex-based FPGA devices. Power impact of a gated clock circuitry aimed at reducing flip-flops output rate at the bit level is studied. Power performance is also given for pipeline stages based on the implementation of a double edge-triggered flip-flop. Using a pipelined Cordic Core circuit as an example, this study did not find evidence in power benefits either when gated clock at the bit-level or double-edge triggered flip-flops used when synthesized with FPGA logic resources.
Resumo:
A Fractal Quantizer is proposed that replaces the expensive division operation for the computation of scalar quantization by more modest and available multiplication, addition and shift operations. Although the proposed method is iterative in nature, simulations prove a virtually undetectable distortion to the naked eve for JPEG compressed images using a single iteration. The method requires a change to the usual tables used in JPEG algorithins but of similar size. For practical purposes, performing quantization is reduced to a multiplication plus addition operation easily programmed in either low-end embedded processors and suitable for efficient and very high speed implementation in ASIC or FPGA hardware. FPGA hardware implementation shows up to x15 area-time savingscompared to standars solutions for devices with dedicated multipliers. The method can be also immediately extended to perform adaptive quantization(1).
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power solutions biased toward the competitive consumer electronics market.
Resumo:
This paper discusses the architectural design, implementation and associated simulated peformance results of a possible receiver solution fir a multiband Ultra-Wideband (UWB) receiver. The paper concentrates on the tradeoff between the soft-bit width and numerical precision requirements for the receiver versus performance. The required numerical precision results obtained in this paper can be used by baseband designers of cost effective UWB systems using Systein-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
A low clock frequency FFT core implementation for multiband full-rate ultra-wideband (UWB) receivers
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution particularly aimed at a low-clock rate implementation. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module in the device for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power consumer electronics product solutions biased toward the very competitive market.
Resumo:
This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).