167 resultados para ARCTIC OSCILLATION
em CentAUR: Central Archive University of Reading - UK
Resumo:
Using an idealized primitive equation model, we investigate how stratospheric conditions alter the development of baroclinic instability in the troposphere. Starting from the lifecycle paradigm of Thorncroft et al., we consider the evolution of baroclinic lifecycles resulting from the addition of a stratospheric jet to the LC1 initial condition. We find that the addition of the stratospheric jet yields a net surface geopotential height anomaly that strongly resembles the Arctic Oscillation. With the additional modification of the tropospheric winds to resemble the high-AO climatology, the surface response is amplified by a factor 10 and, though dominated by the tropospheric changes, shows similar sensitivity to the stratospheric conditions.
Resumo:
The definition and interpretation of the Arctic oscillation (AO) are examined and compared with those of the North Atlantic oscillation (NAO). It is shown that the NAO reflects the correlations between the surface pressure variability at its centers of action, whereas this is not the case for the AO. The NAO pattern can be identified in a physically consistent way in principal component analysis applied to various fields in the Euro-Atlantic region. A similar identification is found in the Pacific region for the Pacific–North American (PNA) pattern, but no such identification is found here for the AO. The AO does reflect the tendency for the zonal winds at 35° and 55°N to anticorrelate in both the Atlantic and Pacific regions associated with the NAO and PNA. Because climatological features in the two ocean basins are at different latitudes, the zonally symmetric nature of the AO does not mean that it represents a simple modulation of the circumpolar flow. An increase in the AO or NAO implies strong, separated tropospheric jets in the Atlantic but a weakened Pacific jet. The PNA has strong related variability in the Pacific jet exit, but elsewhere the zonal wind is similar to that related to the NAO. The NAO-related zonal winds link strongly through to the stratosphere in the Atlantic sector. The PNA-related winds do so in the Pacific, but to a lesser extent. The results suggest that the NAO paradigm may be more physically relevant and robust for Northern Hemisphere variability than is the AO paradigm. However, this does not disqualify many of the physical mechanisms associated with annular modes for explaining the existence of the NAO.
Resumo:
n this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.
Investigating the relationship between Eurasian snow and the Arctic Oscillation with data and models
Resumo:
Recent research suggests Eurasian snow-covered area (SCA) influences the Arctic Oscillation (AO) via the polar vortex. This could be important for Northern Hemisphere winter season forecasting. A fairly strong negative correlation between October SCA and the AO, based on both monthly and daily observational data, has been noted in the literature. While reproducing these previous links when using the same data, we find no further evidence of the link when using an independent satellite data source, or when using a climate model.
Resumo:
The observed dramatic decrease in September sea ice extent (SIE) has been widely discussed in the scientific literature. Though there is qualitative agreement between observations and ensemble members of the Third Coupled Model Intercomparison Project (CMIP3), it is concerning that the observed trend (1979–2010) is not captured by any ensemble member. The potential sources of this discrepancy include: observational uncertainty, physical model limitations and vigorous natural climate variability. The latter has received less attention and is difficult to assess using the relatively short observational sea ice records. In this study multi-centennial pre-industrial control simulations with five CMIP3 climate models are used to investigate the role that the Arctic oscillation (AO), the Atlantic multi-decadal oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC) play in decadal sea ice variability. Further, we use the models to determine the impact that these sources of variability have had on SIE over both the era of satellite observation (1979–2010) and an extended observational record (1953–2010). There is little evidence of a relationship between the AO and SIE in the models. However, we find that both the AMO and AMOC indices are significantly correlated with SIE in all the models considered. Using sensitivity statistics derived from the models, assuming a linear relationship, we attribute 0.5–3.1%/decade of the 10.1%/decade decline in September SIE (1979–2010) to AMO driven variability.
Resumo:
The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis). Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the North Pacific area into the coupled system drastically changes the Arctic climate variability to a point where the Arctic Oscillation becomes an ‘internal mode’ of variability and correlations of year-to-year variability with observational data vanish. In line with previous studies, our simulations provide evidence that Arctic sea ice export is mainly due to ‘internal variability’ within the Arctic region. We conclude that the choice of model domains should be based on physical knowledge of the atmospheric and oceanic processes and not on ‘geographic’ reasons. This is particularly the case for areas like the Arctic, which has very complex feedbacks between components of the regional climate system.
Resumo:
Recent analysis of the Arctic Oscillation (AO) in the stratosphere and troposphere has suggested that predictability of the state of the tropospheric AO may be obtained from the state of the stratospheric AO. However, much of this research has been of a purely qualitative nature. We present a more thorough statistical analysis of a long AO amplitude dataset which seeks to establish the magnitude of such a link. A relationship between the AO in the lower stratosphere and on the 1000 hPa surface on a 10-45 day time-scale is revealed. The relationship accounts for 5% of the variance of the 1000 hPa time series at its peak value and is significant at the 5% level. Over a similar time-scale the 1000 hPa time series accounts for 1% of itself and is not significant at the 5% level. Further investigation of the relationship reveals that it is only present during the winter season and in particular during February and March. It is also demonstrated that using stratospheric AO amplitude data as a predictor in a simple statistical model results in a gain of skill of 5% over a troposphere-only statistical model. This gain in skill is not repeated if an unrelated time series is included as a predictor in the model. Copyright © 2003 Royal Meteorological Society
Resumo:
We use an empirical statistical model to demonstrate significant skill in making extended-range forecasts of the monthly-mean Arctic Oscillation (AO). Forecast skill derives from persistent circulation anomalies in the lowermost stratosphere and is greatest during boreal winter. A comparison to the Southern Hemisphere provides evidence that both the time scale and predictability of the AO depend on the presence of persistent circulation anomalies just above the tropopause. These circulation anomalies most likely affect the troposphere through changes to waves in the upper troposphere, which induce surface pressure changes that correspond to the AO.
Resumo:
A number of recent papers in the atmospheric science literature have suggested that a dynamical link exists between the stratosphere and troposphere. Numerical modelling studies have shown that the troposphere has a time-mean response to changes to the stratospheric climatological state. In this study the response of the troposphere to an imposed transient stratospheric change is examined. The study uses a high horizontal and vertical resolution numerical weather-prediction model. Experiments compare the tropospheric forecasts of two medium-range forecast ensembles which have identical tropospheric initial conditions and different stratospheric initial conditions. In three case studies described here, stratospheric initial conditions have a statistically significant impact on the tropospheric flow. The mechanism for this change involves, in its most basic step, a change to tropospheric synoptic-scale systems. A consistent change to the tropospheric synoptic-scale systems occurs in response to the stratospheric initial conditions. The aggregated impact of changes to individual synoptic systems maps strongly onto the structure of the Arctic Oscillation, particularly over the North Atlantic storm track. The relationship between the stratosphere and troposphere, while apparent in Arctic Oscillation diagnostics, does not occur on coherent, hemispheric scales.
Resumo:
Using a simple stochastic model, the authors illustrate that the occurrence of a meridional dipole in the first empirical orthogonal function (EOF) of a time-dependent zonal jet is a simple consequence of the north–south excursion of the jet center, and this geometrical fact can be understood without appealing to fluid dynamical principles. From this it follows that one ought not, perhaps, be surprised at the fact that such dipoles, commonly referred to as the Arctic Oscillation (AO) or the Northern Annular Mode (NAM), have robustly been identified in many observational studies and appear to be ubiquitous in atmospheric models across a wide range of complexity.
Resumo:
This paper reports recent changes in the mass balance record from the Djankuat Glacier, central greater Caucasus, Russia, and investigates possible relationships between the components of mass balance, local climate, and distant atmospheric forcing. The results clearly show that a strong warming signal has emerged in the central greater Caucasus, particularly since the 1993/1994 mass balance year, and this has led to a significant increase in the summer ablation of Djankuat. At the same time, there has been no compensating consistent increase in winter precipitation and accumulation leading to the strong net loss of mass and increase in glacier runoff. Interannual variability in ablation and accumulation is partly associated with certain major patterns of Northern Hemisphere climatic variability. The positive phase of the North Pacific (NP) teleconnection pattern forces negative geopotential height and temperature anomalies over the Caucasus in summer and results in reduced summer melt, such as in the early 1990s, when positive NP extremes resulted in a temporary decline in ablation rates. The positive phase of the NP is related to El Nino-Southern Oscillation, and it is possible that a teleconnection between the tropical Pacific sea surface temperatures and summer air temperatures in the Caucasus is bridged through the NP pattern. More recently, the NP pattern was predominantly negative, and this distant moderating forcing on summer ablation in the Caucasus was absent. Statistically significant correlations are observed between accumulation and the Scandinavian (SCA) teleconnection pattern. The frequent occurrence of the positive SCA phase at the beginning of accumulation season results in lower than average snowfall and reduced accumulation. The relationship between the North Atlantic Oscillation (NAO), Arctic Oscillation, and accumulation is weak, although positive precipitation anomalies in the winter months are associated with the negative phase of the NAO. A stronger positive correlation is observed between accumulation on Djankuat and geopotential height over the Bay of Biscay unrelated to the established modes of the Northern Hemisphere climatic variability. These results imply that the mass balance of Djankuat is sensitive to the natural variability in the climate system. Distant forcing, however, explains only 16% of the variance in the ablation record and cannot fully explain the recent increase in ablation and negative mass balance.
Resumo:
Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.
Resumo:
A novel diagnostic tool is presented, based on polar-cap temperature anomalies, for visualizing daily variability of the Arctic stratospheric polar vortex over multiple decades. This visualization illustrates the ubiquity of extended-time-scale recoveries from stratospheric sudden warmings, termed here polar-night jet oscillation (PJO) events. These are characterized by an anomalously warm polar lower stratosphere that persists for several months. Following the initial warming, a cold anomaly forms in the middle stratosphere, as does an anomalously high stratopause, both of which descend while the lower-stratospheric anomaly persists. These events are characterized in four datasets: Microwave Limb Sounder (MLS) temperature observations; the 40-yr ECMWF Re-Analysis (ERA-40) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalyses; and an ensemble of three 150-yr simulations from the Canadian Middle Atmosphere Model. The statistics of PJO events in the model are found to agree very closely with those of the observations and reanalyses. The time scale for the recovery of the polar vortex following sudden warmings correlates strongly with the depth to which the warming initially descends. PJO events occur following roughly half of all major sudden warmings and are associated with an extended period of suppressed wave-activity fluxes entering the polar vortex. They follow vortex splits more frequently than they do vortex displacements. They are also related to weak vortex events as identified by the northern annular mode; in particular, those weak vortex events followed by a PJO event show a stronger tropospheric response. The long time scales, predominantly radiative dynamics, and tropospheric influence of PJO events suggest that they represent an important source of conditional skill in seasonal forecasting.
Resumo:
The Arctic has undergone substantial changes over the last few decades in various cryospheric and derivative systems and processes. Of these, the Arctic sea ice regime has seen some of the most rapid change and is one of the most visible markers of Arctic change outside the scientific community. This has drawn considerable attention not only from the natural sciences, but increasingly, from the political and commercial sectors as they begin to grapple with the problems and opportunities that are being presented. The possible impacts of past and projected changes in Arctic sea ice, especially as it relates to climatic response, are of particular interest and have been the subject of increasing research activity. A review of the current knowledge of the role of sea ice in the climate system is therefore timely. We present a review that examines both the current state of understanding, as regards the impacts of sea-ice loss observed to date, and climate model projections, to highlight hypothesised future changes and impacts on storm tracks and the North Atlantic Oscillation. Within the broad climate-system perspective, the topics of storminess and large-scale variability will be specifically considered. We then consider larger-scale impacts on the climatic system by reviewing studies that have focused on the interaction between sea-ice extent and the North Atlantic Oscillation. Finally, an overview of the representation of these topics in the literature in the context of IPCC climate projections is presented. While most agree on the direction of Arctic sea-ice change, the rates amongst the various projections vary greatly. Similarly, the response of storm tracks and climate variability are uncertain, exacerbated possibly by the influence of other factors. A variety of scientific papers on the relationship between sea-ice changes and atmospheric variability have brought to light important aspects of this complex topic. Examples are an overall reduction in the number of Arctic winter storms, a northward shift of mid-latitude winter storms in the Pacific and a delayed negative NAO-like response in autumn/winter to a reduced Arctic sea-ice cover (at least in some months). This review paper discusses this research and the disagreements, bringing about a fresh perspective on this issue.