2 resultados para APETALA2
em CentAUR: Central Archive University of Reading - UK
Resumo:
Development of an efficient tissue culture protocol in coconut is hampered by numerous technical constraints. Thus a greater understanding of the fundamental aspects of embryogenesis is essential. The role of AINTEGUMENTA-like genes in embryogenesis has been elucidated not only in model plants but also in economically important crops. A coconut gene, CnANT, that encodes two APETALA2 (AP2) domains and a conserved linker region similar to those of the BABY BOOM transcription factor was cloned, characterized, and its tissue specific expression was examined. The full-length cDNA of 1,780 bp contains a 1,425-bp open reading frame that encodes a putative peptide of 474 amino acids. The genomic DNA sequence includes 2,317 bp and consists of nine exons interrupted by eight introns. The exon/intron organization of CnANT is similar to that of homologous genes in other plant species. Analysis of differential tissue expression by real-time polymerase chain reaction indicated that CnANT is expressed more highly in in vitro grown tissues than in other vegetative tissues. Sequence comparison of the genomic sequence of CnANT in different coconut varieties revealed one single nucleotide polymorphism and one indel in the first exon and first intron, respectively, which differentiate the Tall group of trees from Dwarfs. The indel sequence, which can be considered a simple sequence repeats marker, was successfully used to distinguish the Tall and Dwarf groups as well as to develop a marker system, which may be of value in the identification of parental varieties that are used in coconut breeding programs in Sri Lanka.
Resumo:
Knowledge of the molecular biological changes underlying the process of embryogenesis is important for the improvement of somatic embryogenesis of coconut. Among the transcription factors that control the transition from vegetative to embryogenic growth, members of APETALA2/Ethylene-responsive element binding protein domain family play an important role in promoting embryo development. Significant insights into the role of AP2 genes have been obtained by the ectopic expression of AP2 sub family genes in transgenic Arabidopsis. A homolog of the AINTEGUMENTA-like gene that encodes the two AP2 domains and the linker region was identified in the coconut genome. Phylogenetic analysis showed that this gene, CnANT, encodes a protein that branched with BABY BOOM/PLETHORA clade in the AINTEGUMENTA-like major clade and was similar to the oil palm EgAP2-1 protein. According to real time RT-PCR results, higher expression of CnANT was observed in more mature zygotic embryos. Also, high CnANT expression was recorded in embryogenic callus compared to other stages of somatic embryogenesis. We examined the effect of ectopic CnANT expression on the development and regenerative capacity of transgenic Arabidopsis. Overexpression of CnANT in Arabidopsis induced hormone free regeneration of explants. Furthermore, ectopic expression of CnANT enhanced regeneration in vitro and suggested a role for this gene in cell proliferation during in vitro culture.