11 resultados para ANTIFUNGAL CHITINASE
em CentAUR: Central Archive University of Reading - UK
Resumo:
In dual cultures, the supernatant filtrate of the biological control agent Bacillus subtilis was evaluated against (Fusarium oxysporum f.sp. lentis) the causal organism of lentil vascular wilt. The antagonistic activity was evaluated as percent reduction of fungal growth (certainly due, in part, to the antifungal metabolites produced by the antagonistic bacterium). The in-vitro experiments showed that B. subtilis filtrate, whether solid or liquid media, had a strong inhibiting activity on the spore germination and mycelial growth of F. oxysporum f. sp. lentis. In a glasshouse experiment, soil was drenched with B. subtilis filtrate at 30 ml/kg (vol/wt) around seedlings of a susceptible lentil line (ILL 4605). In this treatment there was only 31% mortality compared with 100% kill of plants in the control treatment (P≤0.05).
Resumo:
Fusarium oxysporum f.sp. lycopersici (Fol) is the causal agent of the Fusarium wilt disease of tomato. Soil fumigant (mainly methyl bromide) applications are in use for its control. With the increasing environmental awareness, biological control methods are under investigation for their effectiveness, including the use of antagonists. Pseudomonas oryzihabitans (=Flavimonas oryzihabitans), a symbiont of the entomopathogenic nematode Steinernema abbasi was investigated as an antagonism of a Fol isolate in two laboratory and two glasshouse experiments. Bacteria and cell-free filtrate antifungal activity were tested both in dual cultures and in broth culture. In pot experiments, suspensions of bacteria in five concentrations (106, 105, 104, 103 and 102 cells/ml) were tested for their ability to control the pathogen at 25±3°C. In all tests the bacterium significantly inhibited the growth of Fol mycelium in vitro. Similar results were obtained when the bacterium was also tested against Fusarium oxysporum f.sp. radicis lycopersici and against Rhizoctonia solani. Moreover, when it was introduced into the soil, it was able to suppress the Fusarium wilt of tomato.
Resumo:
Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.
Resumo:
Solvent-free desymmetrisation of meso-dialdehyde 1 with chiral 1-phenylethan-1-ol, led to preparation of 4-silyloxy-6-alkyloxytetrahydro-2H-pyran-2-one (+)-3a with a 96:4 d.r. Deprotected lactone (+)-19a and the related racemic lactones 16a-18a present a lactone moiety resembling the natural substrate of HMG-CoA reductase and their antifungal properties have been evaluated against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. These compounds were selectively active against B. cinerea, while inactive against C. gloeosporioides.
Resumo:
Entomopathogenic bacterial strains Pseudomonas (Flavimonas) oryzihabitans and Xenorhabdus nematophilus, both bacterial symbionts of the entomopathogenic nematodes Steinernema abbasi and S. carpocapsae have been recently used for suppression of soil-borne pathogens. Bacterial biocontrol agents (P. oryzihabitans and X nematophila) have been tested for production of secondary metabolites in vitro and their fungistatic effect,on mycelium and spore development of soil-borne pathogens. Isolates of Pythium spp. and Rhizoctonia solani, the causal agent of cotton damping-off, varied in sensitivity in vitro to the antibiotics phenazine-I-carboxylic acid (PCA), cyanide (HCN) and siderophores produced by bacterial strains shown previously to have potential for biological control of those pathogens. These findings affirm the role of the antibiotics PCA, HCN and siderophores in the biocontrol activity of these entomopathogenic strains and support earlier evidence that mechanisms of secondary metabolites are responsible for suppression of damping-off diseases. In the present studies colonies of R oryzihabitans showed production of PCA with presence of crystalline deposits after six days development and positive production where found as well in the siderophore's assay when X nematophila strain indicated HCN production in the in vitro assays. In vitro antifungal activity showed that bacteria densities of 101 to 10(6)cells/ml have antifungal activity in different media cultures. The results show further that isolates of Pythium spp. and R. solani insensitive to PCA, HCN and siderophores are present in the pathogen population and provide additional justification for the use of mixtures of entomopathogenic strains that employ different mechanisms of pathogen suppression to manage damping-off.
Resumo:
The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.
Resumo:
Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high throughput diversity and functionality analysis has allowed characterisation of the diverse microbial phylotypes present in health and disease. Studies in monozygotic twins, showing that these retain highly similar microbiota decades after birth and initial colonisation, are strongly indicative that diversity of the microbiome is host-specific and affected by the genotype. Microbial diversity in the human body is reflected in both richness and evenness. Diversity increases steeply from birth reaching its highest point in early adulthood, before declining in older age. However, in healthy subjects there appears to be a core of microbial phylotypes which remains relatively stable over time. Studies of individuals from diverse geopraphies suggest that clusters of intestinal bacterial groups tend to occur together, constituting ‘enterotypes’. So variation in intestinal microbiota is stratified rather than continuous and there may be a limited number of host/microbial states which respond differently to environmental influences. Exploration of enterotypes and functional groups may provide biomarkers for disease and insights into the potential for new treatments based on manipulation of the microbiome. In health, the microbiota interact with host defences and exist in harmonious homeostasis which can then be disturbed by invading organisms or when ‘carpet bombing’ by antibiotics occurs. In a portion of individuals with infections, the disease will resolve itself without the need for antibiotics and microbial homeostasis with the host’s defences is restored. The administration of probiotics (live microorganisms which when administered in adequate amounts confer a health benefit on the host) represents an artificial way to enhance or stimulate these natural processes. The study of innate mechanisms of antimicrobial defence on the skin, including the production of numerous antimicrobial peptides (AMPs), has shown an important role for skin commensal organisms. These organisms may produce AMPs, and also amplify the innate immune responses to pathogens by activating signalling pathways and processing host produced AMPs. Research continues into how to enhance and manipulate the role of commensal organisms on the skin. The challenges of skin infection (including diseases caused by multiply resistant organisms) and infestations remain considerable. The potential to re-colonise the skin to replace or reduce pathogens, and exploring the relationship between microbiota elsewhere and skin diseases are among a growing list of research targets. Lactobacillus species are among the best known ‘beneficial’ bacterial members of the human microbiota. Of the approximately 120 species known, about 15 are known to occur in the human vagina. These organisms have multiple properties, including the production of lactic acid, hydrogen peroxide and bacteriocins, which render the vagina inhospitable to potential pathogens. Depletion of the of the normal Lactobacillus population and overgrowth of vaginal anaerobes, accompanied by the loss of normal vaginal acidity can lead to bacterial vaginosis – the commonest cause of abnormal vaginal discharge in women. Some vaginal anaerobes are associated with the formation of vaginal biofilms which serve to act as a reservoir of organisms which persists after standard antibiotic therapy of bacterial vaginosis and may help to account for the characteristically high relapse rate in the condition. Administration of Lactobacillus species both vaginally and orally have shown beneficial effects in the treatment of bacterial vaginosis and such treatments have an excellent overall safety record. Candida albicans is a frequent coloniser of human skin and mucosal membranes, and is a normal part of the microbiota in the mouth, gut and vagina. Nevertheless Candida albicans is the most common fungal pathogen worldwide and is a leading cause of serious and often fatal nosocomial infections. What turns this organism from a commensal to a pathogen is a combination of increasing virulence in the organism and predisposing host factors that compromise immunity. There has been considerable research into the use of probiotic Lactobacillus spp. in vaginal candidiasis. Studies in reconstituted human epithelium and monolayer cell cultures have shown that L. rhamnosus GG can protect mucosa from damage caused by Candida albicans, and enhance the immune responses of mucosal surfaces. Such findings offer the promise that the use of such probiotic bacteria could provide new options for antifungal therapy. Studies of changes of the human intestinal microbiota in health and disease are complicated by its size and diversity. The Alimentary Pharmabiotic Centre in Cork (Republic of Ireland) has the mission to ‘mine microbes for mankind’ and its work illustrates the potential benefits of understanding the gut microbiota. Work undertaken at the centre includes: mapping changes in the microbiota with age; studies of the interaction between the microbiota and the gut; potential interactions between the gut microbiota and the central nervous system; the potential for probiotics to act as anti-infectives including through the production of bacteriocins; and the characterisation of interactions between gut microbiota and bile acids which have important roles as signalling molecules and in immunity. The important disease entity where the role of the gut microbiota appears to be central is the Irritable Bowel Syndrome (IBS). IBS patients show evidence of immune activation, impaired gut barrier function and abnormal gut microbiota. Studies with probiotics have shown that these organisms can exert anti-inflammatory effects in inflammatory bowel disease and may strengthen the gut barrier in IBS of the diarrhoea-predominant type. Formal randomised trials of probiotics in IBS show mixed results with limited benefit for some but not all. Studies confirm that administered probiotics can survive and temporarily colonise the gut. They can also stimulate the numbers of other lactic acid bacilli in the gut, and reduce the numbers of pathogens. However consuming live organisms is not the only way to influence gut microbiota. Dietary prebiotics are selectively fermented ingredients that can change the composition and/or activity of the gastrointestinal microbiota in beneficial ways. Dietary components that reach the colon, and are available to influence the microbiota include poorly digestible carbohydrates, such as non-starch polysaccharides, resistant starch, non-digestible oligosaccharides (NDOs) and polyphenols. Mixtures of probiotic and prebiotic ingredients that can selectively stimulate growth or activity of health promoting bacteria have been termed ‘synbiotics’. All of these approaches can influence gut microbial ecology, mainly to increase bifidobacteria and lactobacilli, but metagenomic approaches may reveal wider effects. Characterising how these changes produce physiological benefits may enable broader use of these tactics in health and disease in the future. The current status of probiotic products commercially available worldwide is less than ideal. Prevalent problems include misidentification of ingredient organisms and poor viability of probiotic microorganisms leading to inadequate shelf life. On occasions these problems mean that some commercially available products cannot be considered to meet the definition of a probiotic product. Given the potential benefits of manipulating the human microbiota for beneficial effects, there is a clear need for improved regulation of probiotics. The potential importance of the human microbiota cannot be overstated. ‘We feed our microbes, they talk to us and we benefit. We just have to understand and then exploit this.’ (Willem de Vos).
Resumo:
This Feature Article discusses several classes of lipopeptide with important biomedical applications as antimicrobial and antifungal agents, in immune therapies and in personal care applications among others. Two main classes of lipopeptide are considered: (i) bacterially-expressed lipopeptides with a cyclic peptide headgroup and (ii) linear lipopeptides (with one or more lipid chains) based on bio-derived and bio-inspired amino acid sequences with current clinical applications. The applications are briefly summarized, and the biophysical characterization of the molecules is reviewed, with a particular focus on self-assembly. For several of these types of biomolecule, the formation of micelles above a critical micelle concentration has been observed while others form bilayer structures, depending on conditions of pH and temperature. As yet, there are few studies on the possible relationship between self-assembly into structures such as micelles and bioactivity of this class of molecule although this is likely to attract further attention.
Resumo:
The aim of this work is to build on the success of in vitro studies of an active packaging, produced by coating the surface of post-consumer recycled polyethylene terephthalate (PCRPET) package with an aqueous silicone solution (2%, v/v) containing an antifungal agent (potassium sorbate, KS). Antifungal efficacy was evaluated, in vivo, during the storage of raspberries, blackberries and blueberries by examining their shelf life extension. The packaging effectively delayed the growth of Botrytis by extending its lag-phase, which, in turn, extended the shelf life of the berries by up to 3d. Among the three berries tested, the packaging proved to be more advantageous in the case of raspberries, due to their physiological characteristics and shorter shelf life. Based on sensory panel evaluations, it was shown that the coating, containing KS, did not influence the packaging appearance and transparency, and the fruit did not suffer from any off-flavor development.
Resumo:
Coconut, Cocos nucifera L. is a major plantation crop, which ensures income for millions of people in the tropical region. Detailed molecular studies on zygotic embryo development would provide valuable clues for the identification of molecular markers to improve somatic embryogenesis. Since there is no ongoing genome project for this species, coconut expressed sequence tags (EST) would be an interesting technique to identify important coconut embryo specific genes as well as other functional genes in different biochemical pathways. The goal of this study was to analyse the ESTs by examining the transcriptome data of the different embryo tissue types together with one somatic tissue. Here, four cDNA libraries from immature embryo, mature embryo, microspore derived embryo and mature leaves were constructed. cDNA was sequenced by the Roche-454 GS-FLX system and assembled into 32621 putative unigenes and 155017 singletons. Of these unigenes, 18651 had significant sequence similarities to non-redundant protein database, from which 16153 were assigned to one or more gene ontology categories. Homologue genes, which are responsible for embryo development such as chitinase, beta-1,3-glucanase, ATP synthase CF0 subunit, thaumatin-like protein and metallothionein-like protein were identified among the embryo EST collection. Of the unigenes, 6694 were mapped into 139 KEGG pathways including carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism. This collection of 454-derived EST data generated from different tissue types provides a significant resource for genome wide studies and gene discovery of coconut, a non-model species.