5 resultados para AMO
em CentAUR: Central Archive University of Reading - UK
Resumo:
During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.
Resumo:
Observations suggest a possible link between the Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) variability, with the warm AMO phase being related to weaker ENSO variability. A coupled ocean-atmosphere model is used to investigate this relationship and to elucidate mechanisms responsible for it. Anomalous sea surface temperatures (SSTs) associated with the positive AMO lead to change in the basic state in the tropical Pacific Ocean. This basic state change is associated with a deepened thermocline and reduced vertical stratification of the equatorial Pacific ocean, which in turn leads to weakened ENSO variability. We suggest a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific. The results suggest a non-local mechanism for changes in ENSO statistics and imply that anomalous Atlantic ocean SSTs can modulate both mean climate and climate variability over the Pacific.
Resumo:
The multidecadal variability of El Niño–Southern Oscillation (ENSO)–South Asian monsoon relationship is elucidated in a 1000 year control simulation of a coupled general circulation model. The results indicate that the Atlantic Multidecadal Oscillation (AMO), resulting from the natural fluctuation of the Atlantic Meridional Overturning Circulation (AMOC), plays an important role in modulating the multidecadal variation of the ENSO-monsoon relationship. The sea surface temperature anomalies associated with the AMO induce not only significant climate impact in the Atlantic but also the coupled feedbacks in the tropical Pacific regions. The remote responses in the Pacific Ocean to a positive phase of the AMO which is resulted from enhanced AMOC in the model simulation and are characterized by statistically significant warming in the North Pacific and in the western tropical Pacific, a relaxation of tropical easterly trades in the central and eastern tropical Pacific, and a deeper thermocline in the eastern tropical Pacific. These changes in mean states lead to a reduction of ENSO variability and therefore a weakening of the ENSO-monsoon relationship. This study suggests a nonlocal mechanism for the low-frequency fluctuation of the ENSO-monsoon relationship, although the AMO explains only a fraction of the ENSO–South Asian monsoon variation on decadal-multidecadal timescale. Given the multidecadal variation of the AMOC and therefore of the AMO exhibit decadal predictability, this study highlights the possibility that a part of the change of climate variability in the Pacific Ocean and its teleconnection may be predictable.
Resumo:
The observed dramatic decrease in September sea ice extent (SIE) has been widely discussed in the scientific literature. Though there is qualitative agreement between observations and ensemble members of the Third Coupled Model Intercomparison Project (CMIP3), it is concerning that the observed trend (1979–2010) is not captured by any ensemble member. The potential sources of this discrepancy include: observational uncertainty, physical model limitations and vigorous natural climate variability. The latter has received less attention and is difficult to assess using the relatively short observational sea ice records. In this study multi-centennial pre-industrial control simulations with five CMIP3 climate models are used to investigate the role that the Arctic oscillation (AO), the Atlantic multi-decadal oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC) play in decadal sea ice variability. Further, we use the models to determine the impact that these sources of variability have had on SIE over both the era of satellite observation (1979–2010) and an extended observational record (1953–2010). There is little evidence of a relationship between the AO and SIE in the models. However, we find that both the AMO and AMOC indices are significantly correlated with SIE in all the models considered. Using sensitivity statistics derived from the models, assuming a linear relationship, we attribute 0.5–3.1%/decade of the 10.1%/decade decline in September SIE (1979–2010) to AMO driven variability.
Resumo:
The summertime variability of the extratropical storm track over the Atlantic sector and its links to European climate have been analysed for the period 1948–2011 using observations and reanalyses. The main results are as follows. (1) The dominant mode of the summer storm track density variability is characterized by a meridional shift of the storm track between two distinct paths and is related to a bimodal distribution in the climatology for this region. It is also closely related to the Summer North Atlantic Oscillation (SNAO). (2) A southward shift is associated with a downstream extension of the storm track and a decrease in blocking frequency over the UK and northwestern Europe. (3) The southward shift is associated with enhanced precipitation over the UK and northwestern Europe and decreased precipitation over southern Europe (contrary to the behaviour in winter). (4) There are strong ocean–atmosphere interactions related to the dominant mode of storm track variability. The atmosphere forces the ocean through anomalous surface fluxes and Ekman currents, but there is also some evidence consistent with an ocean influence on the atmosphere, and that coupled ocean–atmosphere feedbacks might play a role. The ocean influence on the atmosphere may be particularly important on decadal timescales, related to the Atlantic Multidecadal Oscillation (AMO).