11 resultados para AMMONIUM CARBONATES
em CentAUR: Central Archive University of Reading - UK
Resumo:
Sorghum (Sorghum bicolor L.) plants were grown in split pots in three Rothamsted soils with different soil pH values and phosphorus (P) contents. Ammonium addition resulted in higher plant dry weight and P content than comparable nitrate treatments. The pH of soils in the rhizosphere (0.51-mm average thickness) differed from the bulk soil depending on nitrogen (N) form and level. Ammonium application resulted in a pH decrease, but nitrate application slightly increased pH. To examine the effect of rhizosphere acidification on mobilization of phosphate, 0.5 M NaHCO3 extractable phosphate was measured. The lowering rhizosphere pH enhanced the solubility of P in the soil and maybe availability of P to plants. Rhizosphere-P depletion increased with increasing ammonium supply, but when N was supplied as nitrate, P depletion was not related to increasing nitrate supply. Low P status Hoosfield soils developed mycorrhizal infection., and as a result, P inflow was increased. Geescroft soil, which initially had a high P status, did not develop mycorrhizal infection, and P inflow was much smaller and was unaffected by N treatments. Therefore, plant growth and P uptake were influenced by both rhizosphere pH and indigenous mycorrhizal infection.
Resumo:
Procedures for routine analysis of soil phosphorus (P) have been used for assessment of P status, distribution and P losses from cultivated mineral soils. No similar studies have been carried out on wetland peat soils. The objective was to compare extraction efficiency of ammonium lactate (PAL), sodium bicarbonate (P-Olsen), and double calcium lactate (P-DCaL) and P distribution in the soil profile of wetland peat soils. For this purpose, 34 samples of the 0-30, 30-60 and 60-90 cm layers were collected from peat soils in Germany, Israel, Poland, Slovenia, Sweden and the United Kingdom and analysed for P. Mean soil pH (CaCl2, 0.01 M) was 5.84, 5.51 and 5.47 in the 0-30, 30-60 and 60-90 cm layers, respectively. The P-DCaL was consistently about half the magnitude of either P-AL or P-Olsen. The efficiency of P extraction increased in the order P-DCaL < P-AL &LE; P-Olsen, with corresponding means (mg kg(-1)) for all soils (34 samples) of 15.32, 33.49 and 34.27 in 0-30 cm; 8.87, 17.30 and 21.46 in 30-60 cm; and 5.69, 14.00 and 21.40 in 60-90 cm. The means decreased with depth. When examining soils for each country separately, P-Olsen was relatively evenly distributed in the German, UK and Slovenian soils. P-Olsen was linearly correlated (r = 0.594, P = 0.0002) with pH, whereas the three P tests (except P-Olsen vs P-DCaL) significantly correlated with each other (P = 0.017850.0001). The strongest correlation (r = 0.617, P = 0.0001) was recorded for P-AL vs P-DCaL) and the two methods were inter-convertible using a regression equation: P-AL = -22.593 + 5.353 pH + 1.423 P-DCaL, R-2 = 0.550.
Resumo:
A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 degrees C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 degrees C which are not predicted from the extrapolation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite-siderite and dolomite solid solutions. A calcite-siderite solid solution precipitated at 25 degrees C, with the percentage of CaCO3 in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content. Alternatively, at 70 degrees C Mg was the predominant cation of the solid solutions. These results are compatible with the hypothesis that the relative dehydration energies of Fe, Ca and Mg play an important role in the formation of mixed cation carbonates in nature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A new layered ammonium manganese(II) diphosphate, (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)], has been synthesised under solvothermal conditions at 433 K in ethylene glycol and the structure determined at 293 K using single-crystal X-ray diffraction data (M-r = 584.82, monoclinic, space group P2(1)/a, a = 9.4610( 8), b = 8.3565( 7), c = 9.477(1) Angstrom, beta = 99.908(9) degrees, V = 738.07 Angstrom(3), Z = 2, R = 0.0351 and R-w = 0.0411 for 1262 observed data (I > 3(sigma(I))). The structure consists of chains of cis- and trans-edge sharing MnO6 octahedra linked via P2O7 units to form layers of formula [Mn3P4O14(H2O)(2)](2-) in the ab plane. Ammonium ions lie between the manganese-diphosphate layers. A network of interlayer and ammonium-layer based hydrogen bonding holds the structure together. Magnetic measurements indicate Curie - Weiss behaviour above 30 K with mu(eff) = 5.74(1) mu(B) and theta = -23(1) K, consistent with the presence of high-spin Mn2+ ions and antiferromagnetic interactions. However, the magnetic data reveal a spontaneous magnetisation at 5 K, indicating a canting of Mn2+ moments in the antiferromagnetic ground state. On heating (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)] in water at 433 K under hydrothermal conditions, Mn-5(HPO4)(2)(PO4)(2).4H(2)O, synthetic hureaulite, is formed.
Resumo:
The first examples of sigmatropic rearrangements of ene-endo-spirocyclic, tetrahydropyridine-derived ammonium ylids are reported. Thus, spiro[6.7]-ylids rearrange primarily by a [2,3]-pathway, whereas the analogous [6.6]-ylids rearrange by [1,2]- and [2,3]-mechanisms in roughly equal proportions. This method serves as a rapid entry to the core of a range of alkaloids bearing a pyrrolo[1,2-a]azepine or octahydroindolizidine nucleus.
Resumo:
Sigmatropic rearrangement of tetrahydropyridine-derived ammonium is a valuable method for the preparation of substituted prolines. These reaction normally require elevated temperatures to proceed, but bicyclic tetrahydropyridine-like ylid I undergoes rearrangement at -15 degrees C; the extra rigidity of the azabicyclo[3.3.0]octene system preorganizes the transition state and lowers the activation energy for rearrangement.
Resumo:
[2,3]-Sigmatropic rearrangements of allylic ammonium ylids derived from glycinoylcamphorsultams are highly selective in terms of relative and absolute stereocontrol only when acyclic alkenes are present. When chiral esters of ylids derived from N-methyltetrahydro-pyridine ('NMTP') undergo rearrangement, the reactions show exclusive cis-stereoselectivity but the products are obtained with virtually no absolute stereocontrol. These observations support the notion that sigmatropic rearrangements of N-chiral ammonium ylids are controlled by nitrogen stereogenicity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The first examples of highly enantioselective [2,3]-sigmatropic rearrangements of acyclic allylic ammonium ylids are reported. Thus, a range of N-{2‘-[(N‘-allyl-N‘,N‘-dialkyl)ammonium]}acetyl camphor sultams undergo rearrangement at 0 °C in DME solution with high diastereofacial control (up to 99:1 dr) to give allylglycines in generally high yield. The power of the method has been demonstrated in a rapid and efficient synthesis of (R)-allyl glycine.
Resumo:
The [2,3]-sigmatropic rearrangement of tetrahydropyridine-derived ammonium ylids is a valuable method for the preparation of substituted pyrrolidine carboxylates. The presence of an allylic substituent does not intrinsically reduce the yield of rearrangements, and the diastereoselectivity of rearrangement is related to the structure of the diazo reactant. The method represents a very rapid means of accessing complex pyrrolidines, as shown by preparation of a precursor to the core of lactacystin.
Resumo:
We model the thermal evolution of a subsurface ocean of aqueous ammonium sulfate inside Titan using a parameterized convection scheme. The cooling and crystallization of such an ocean depends on its heat flux balance, and is governed by the pressure-dependent melting temperatures at the top and bottom of the ocean. Using recent observations and previous experimental data, we present a nominal model which predicts the thickness of the ocean throughout the evolution of Titan; after 4.5 Ga we expect an aqueous ammonium sulfate ocean 56 km thick, overlain by a thick (176 km) heterogeneous crust of methane clathrate, ice I and ammonium sulfate. Underplating of the crust by ice I will give rise to compositional diapirs that are capable of rising through the crust and providing a mechanism for cryovolcanism at the surface. We have conducted a parameter space survey to account for possible variations in the nominal model, and find that for a wide range of plausible conditions, an ocean of aqueous ammonium sulfate can survive to the present day, which is consistent with the recent observations of Titan's spin state from Cassini radar data [Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S., 2008. Science 319, 1649–1651].
Resumo:
The latest Hadley Centre climate model, HadGEM2-ES, includes Earth system components such as interactive chemistry and eight species of tropospheric aerosols. It has been run for the period 1860–2100 in support of the fifth phase of the Climate Model Intercomparison Project (CMIP5). Anthropogenic aerosol emissions peak between 1980 and 2020, resulting in a present-day all-sky top of the atmosphere aerosol forcing of −1.6 and −1.4 W m−2 with and without ammonium nitrate aerosols, respectively, for the sum of direct and first indirect aerosol forcings. Aerosol forcing becomes significantly weaker in the 21st century, being weaker than −0.5 W m−2 in 2100 without nitrate. However, nitrate aerosols become the dominant species in Europe and Asia and decelerate the decrease in global mean aerosol forcing. Considering nitrate aerosols makes aerosol radiative forcing 2–4 times stronger by 2100 depending on the representative concentration pathway, although this impact is lessened when changes in the oxidation properties of the atmosphere are accounted for. Anthropogenic aerosol residence times increase in the future in spite of increased precipitation, as cloud cover and aerosol-cloud interactions decrease in tropical and midlatitude regions. Deposition of fossil fuel black carbon onto snow and ice surfaces peaks during the 20th century in the Arctic and Europe but keeps increasing in the Himalayas until the middle of the 21st century. Results presented here confirm the importance of aerosols in influencing the Earth's climate, albeit with a reduced impact in the future, and suggest that nitrate aerosols will partially replace sulphate aerosols to become an important anthropogenic species in the remainder of the 21st century.