90 resultados para AMERICAN-MONSOON-SYSTEM

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric methane concentrations decreased during the early to middle Holocene; however, the governing mechanisms remain controversial. Although it has been suggested that the mid-Holocene minimum methane emissions are associated with hydrological change, direct evidence is lacking. Here we report a new independent approach, linking hydrological change in peat sediments from the Tibetan Plateau to changes in archaeal diether concentrations and diploptene delta C-13 values as tracers for methanogenesis and methanotrophy, respectively. A minimum in inferred methanogenesis occurred during the mid-Holocene, which, locally, corresponds with the driest conditions of the Holocene, reflecting a minimum in Asian monsoon precipitation. The close coupling between precipitation and methanogenesis is validated by climate simulations, which also suggest a regionally widespread impact. Importantly, the minimum in methanogenesis is associated with a maximum in methanotrophy. Therefore, methane emissions in the Tibetan Plateau region were apparently lower during the mid-Holocene and partially controlled by interactions of large-scale atmospheric circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrations of a fully-coupled climate model with and without flux adjustments in the equatorial oceans are performed under 2×CO2 conditions to explore in more detail the impact of increased greenhouse gas forcing on the monsoon-ENSO system. When flux adjustments are used to correct some systematic model biases, ENSO behaviour in the modelled future climate features distinct irregular and periodic (biennial) regimes. Comparison with the observed record yields some consistency with ENSO modes primarily based on air-sea interaction and those dependent on basinwide ocean wave dynamics. Simple theory is also used to draw analogies between the regimes and irregular (stochastically forced) and self-excited oscillations respectively. Periodic behaviour is also found in the Asian-Australian monsoon system, part of an overall biennial tendency of the model under these conditions related to strong monsoon forcing and increased coupling between the Indian and Pacific Oceans. The tropospheric biennial oscillation (TBO) thus serves as a useful descriptor for the coupled monsoon-ENSO system in this case. The presence of obvious regime changes in the monsoon-ENSO system on interdecadal timescales, when using flux adjustments, suggests there may be greater uncertainty in projections of future climate, although further modelling studies are required to confirm the realism and cause of such changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the relationship between the North American monsoon, the Californian sea surface temperature (SST) cold pool, the Rocky Mountains and the North Pacific subtropical anticyclone is investigated using the Hadley Centre's atmospheric climate model, HadAM3. In 1996 Hoskins hypothesized that heating in the North American monsoon might be important for the maintenance of the summertime North Pacific subtropical anticyclone, since the monsoon heating may induce descent to the north-west of the monsoon in the descending eastern flank of the subtropical anticyclone. This descent is further enhanced by radiative cooling and is associated with equatorward surface winds parallel to the western coast of North America. These equatorward winds induce oceanic upwelling of cold water and contribute to the formation of the Californian SST cold pool, which may feed back on the anticyclone by further suppressing convection and inducing descent. More recently, Rodwell and Hoskins also investigated the global summer monsoon–subtropical anticyclone relationship. They examined the role that mountains play in impeding the progress of the low-level mid-latitude westerlies, either deflecting the westerlies northwards where they ascend along the sloping mid-latitude isentropes or deflecting them southwards forcing them to descend along the isentropes. In particular, the introduction of the Rockies into a primitive-equation model adiabatically induces descent in the eastern descending flank of the North Pacific subtropical anticyclone. These hypothesized mechanisms have been investigated using HadAM3, focusing on the possible suppression of convection by the Californian SST cold pool, the response of the North Pacific subtropical anticyclone to the strength of the North American monsoon and the ‘blocking’ of the mid-latitude westerlies by the Rocky Mountains. The role of the Rockies is examined by integrating the model with modified orography for the Rocky Mountains. Changing the height of the Rockies alters the circulation in a way consistent with the mechanism outlined above. Higher Rocky mountains force the westerlies southwards, inducing descent in the eastern flank of the subtropical anticyclone as the air descends along the sloping isentropes. The relationship between the North American monsoon and the North Pacific subtropical anticyclone is investigated by suppressing the monsoon in HadAM3. The suppression of the monsoon is accomplished by increasing the surface albedo over Mexico, which induces anomalous ascent on the eastward flank of the subtropical anticyclone and anomalous polewards surface winds along the western coast of the North American continent, also providing support for the above hypothesis. The removal of the Californian SST cold pool, however, has a statistically insignificant effect on the model, suggesting that in this model the feedback of the SST cold pool on the eastern flank of the anticyclone is weak.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze how the characteristics of El Niño-Southern Oscillation (ENSO) are changed in coupled ocean–atmosphere simulations of the mid-Holocene (MH) and the Last Glacial Maximum (LGM) performed as part of the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2). Comparison of the model results with present day observations show that most of the models reproduce the large scale features of the tropical Pacific like the SST gradient, the mean SST and the mean seasonal cycles. All models simulate the ENSO variability, although with different skill. Our analyses show that several relationships between El Niño amplitude and the mean state across the different control simulations are still valid for simulations of the MH and the LGM. Results for the MH show a consistent El Niño amplitude decrease. It can be related to the large scale atmospheric circulation changes. While the Northern Hemisphere receives more insolation during the summer time, the Asian summer monsoon system is strengthened which leads to the enhancement of the Walker circulation. Easterlies prevailing over the central eastern Pacific induce an equatorial upwelling that damps the El Niño development. Results are less conclusive for 21ka. Large scale dynamic competes with changes in local heat fluxes, so that model shows a wide range of responses, as it is the case in future climate projections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analyses of simulations of the last glacial maximum (LGM) made with 17 atmospheric general circulation models (AGCMs) participating in the Paleoclimate Modelling Intercomparison Project, and a high-resolution (T106) version of one of the models (CCSR1), show that changes in the elevation of tropical snowlines (as estimated by the depression of the maximum altitude of the 0 °C isotherm) are primarily controlled by changes in sea-surface temperatures (SSTs). The correlation between the two variables, averaged for the tropics as a whole, is 95%, and remains >80% even at a regional scale. The reduction of tropical SSTs at the LGM results in a drier atmosphere and hence steeper lapse rates. Changes in atmospheric circulation patterns, particularly the weakening of the Asian monsoon system and related atmospheric humidity changes, amplify the reduction in snowline elevation in the northern tropics. Colder conditions over the tropical oceans combined with a weakened Asian monsoon could produce snowline lowering of up to 1000 m in certain regions, comparable to the changes shown by observations. Nevertheless, such large changes are not typical of all regions of the tropics. Analysis of the higher resolution CCSR1 simulation shows that differences between the free atmospheric and along-slope lapse rate can be large, and may provide an additional factor to explain regional variations in observed snowline changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behavior of the Asian summer monsoon is documented and compared using the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis. In terms of seasonal mean climatologies the results suggest that, in several respects, the ERA is superior to the NCEP-NCAR Reanalysis. The overall better simulation of the precipitation and hence the diabatic heating field over the monsoon domain in ERA means that the analyzed circulation is probably nearer reality. In terms of interannual variability, inconsistencies in the definition of weak and strong monsoon years based on typical monsoon indices such as All-India Rainfall (AIR) anomalies and the large-scale wind shear based dynamical monsoon index (DMI) still exist. Two dominant modes of interannual variability have been identified that together explain nearly 50% of the variance. Individually, they have many features in common with the composite flow patterns associated with weak and strong monsoons, when defined in terms of regional AIR anomalies and the large-scale DMI. The reanalyses also show a common dominant mode of intraseasonal variability that describes the latitudinal displacement of the tropical convergence zone from its oceanic-to-continental regime and essentially captures the low-frequency active/break cycles of the monsoon. The relationship between interannual and intraseasonal variability has been investigated by considering the probability density function (PDF) of the principal component of the dominant intraseasonal mode. Based on the DMI, there is an indication that in years with a weaker monsoon circulation, the PDF is skewed toward negative values (i,e., break conditions). Similarly, the PDFs for El Nino and La Nina years suggest that El Nino predisposes the system to more break spells, although the sample size may limit the statistical significance of the results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The long-term variability of the Siberian High, the dominant Northern Hemisphere anticyclone during winter, is largely unknown. To investigate how this feature varied prior to the instrumental record, we present a reconstruction of a Dec-Feb Siberian High (SH) index based on Eurasian and North American tree rings. Spanning 1599-1980, it provides information on SH variability over the past four centuries. A decline in the instrumental SH index since the late 1970s, related to Eurasian warming, is the most striking feature over the past four hundred years. It is associated with a highly significant (p < 0.0001) step change in 1989. Significant similar to 3-4 yr spectral peaks in the reconstruction fall within the range of variability of the East Asian winter monsoon (which has also declined recently) and lend further support to proposed relationships between these largescale features of the climate system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with the Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 prediction skill, providing targets for model improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for assessing forecast skill and predictability that involves the identification and tracking of extratropical cyclones has been developed and implemented to obtain detailed information about the prediction of cyclones that cannot be obtained from more conventional analysis methodologies. The cyclones were identified and tracked along the forecast trajectories, and statistics were generated to determine the rate at which the position and intensity of the forecasted storms diverge from the analyzed tracks as a function of forecast lead time. The results show a higher level of skill in predicting the position of extratropical cyclones than the intensity. They also show that there is potential to improve the skill in predicting the position by 1 - 1.5 days and the intensity by 2 - 3 days, via improvements to the forecast model. Further analysis shows that forecasted storms move at a slower speed than analyzed storms on average and that there is a larger error in the predicted amplitudes of intense storms than the weaker storms. The results also show that some storms can be predicted up to 3 days before they are identified as an 850-hPa vorticity center in the analyses. In general, the results show a higher level of skill in the Northern Hemisphere (NH) than the Southern Hemisphere (SH); however, the rapid growth of NH winter storms is not very well predicted. The impact that observations of different types have on the prediction of the extratropical cyclones has also been explored, using forecasts integrated from analyses that were constructed from reduced observing systems. A terrestrial, satellite, and surface-based system were investigated and the results showed that the predictive skill of the terrestrial system was superior to the satellite system in the NH. Further analysis showed that the satellite system was not very good at predicting the growth of the storms. In the SH the terrestrial system has significantly less skill than the satellite system, highlighting the dominance of satellite observations in this hemisphere. The surface system has very poor predictive skill in both hemispheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monsoon depressions that form over India during the summer are analyzed using simulations from the Laboratoire de Meteorologie Dynamique general circulation model. This type of synoptic system often occurs with a frequency of one to two per month and can produce a strong Indian rainfall. Two kinds of analyses are conducted in this study. The first one is a subjective analysis based on the evolution of the precipitation rate and the pattern of the sea level pressure. The second one is an objective analysis performed using the TRACK program, which identifies and tracks the minima in the sea level pressure anomaly held and computes the statistics for the distribution of systems. The analysis of a 9-yr control run, which simulates strong precipitation rates over the foothills of the Himalayas and over southern India but weak rates over central India, shows that the number of disturbances is coo low and that they almost never occur during August, when break conditions prevail. The generated disturbances more often move north, toward the foothills of the Himalayas. Another analysis is performed to study the effect of the Tibetan Plateau elevation on these disturbances with a 9-yr run carried out with a Tibetan Plateau at 50% of its current height. It is shown that this later integration simulates more frequent monsoon disturbances, which move rather northwestward, in agreement with the current observations. The comparison between the two runs shows that the June-July-August rainfall difference is in large part due to changes in the occurrence of the monsoon disturbances.