10 resultados para ALEPH Order Number
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT.
Resumo:
In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of high-power amplifier (HPA) nonlinearity at relays. The expression for the end-to-end signal-to-noise ratio (SNR) is derived as per the modified system model by taking into account the interference caused by relaying scheme and HPA nonlinearity. The system performance of the considered relaying network is evaluated in terms of average symbol error probability (SEP) in Nakagami-$m$ fading channels, by making use of the moment-generating function (MGF) approach. Numerical results are provided and show the effects of several parameters, such as quadrature amplitude modulation (QAM) order, number of relays, HPA parameters, and Nakagami parameter, on performance.
Resumo:
The vibration-rotation Raman spectrum of the ν2 and ν5 fundamentals of CH3F is reported, from 1320 to 1640 cm−1, with a resolution of about 0.3 cm−1. The Coriolis resonance between the two bands leads to many perturbation-allowed transitions. Where the resonance is still sufficiently weak that the quantum number K′ retains its meaning, perturbation-allowed transitions are observed for all values of ΔK from +4 to −4; in regions of strong resonance, however, we can only say that the observed transitions obey the selection rule Δ(k−l) = 0 or ±3. The spectrum has been analyzed by band contour simulation using a computer program based on exact diagonalization of the Hamiltonian within the ν2, ν5 vibrational levels, and improved vibration-rotation constants for these bands are reported. The relative magnitudes and relative sings of polarizability derivatives involved in these vibrations are also reported.
Resumo:
The hypothesis of a low dimensional martian climate attractor is investigated by the application of the proper orthogonal decomposition (POD) to a simulation of martian atmospheric circulation using the UK Mars general circulation model (UK-MGCM). In this article we focus on a time series of the interval between autumn and winter in the northern hemisphere, when baroclinic activity is intense. The POD is a statistical technique that allows the attribution of total energy (TE) to particular structures embedded in the UK-MGCM time-evolving circulation. These structures are called empirical orthogonal functions (EOFs). Ordering the EOFs according to their associated energy content, we were able to determine the necessary number to account for a chosen amount of atmospheric TE. We show that for Mars a large fraction of TE is explained by just a few EOFs (with 90% TE in 23 EOFs), which apparently support the initial hypothesis. We also show that the resulting EOFs represent classical types of atmospheric motion, such as thermal tides and transient waves. Thus, POD is shown to be an efficient method for the identification of different classes of atmospheric modes. It also provides insight into the non-linear interaction of these modes.
Resumo:
We consider the problem of constructing balance dynamics for rapidly rotating fluid systems. It is argued that the conventional Rossby number expansion—namely expanding all variables in a series in Rossby number—is secular for all but the simplest flows. In particular, the higher-order terms in the expansion grow exponentially on average, and for moderate values of the Rossby number the expansion is, at best, useful only for times of the order of the doubling times of the instabilities of the underlying quasi-geostrophic dynamics. Similar arguments apply in a wide class of problems involving a small parameter and sufficiently complex zeroth-order dynamics. A modified procedure is proposed which involves expanding only the fast modes of the system; this is equivalent to an asymptotic approximation of the slaving relation that relates the fast modes to the slow modes. The procedure is systematic and thus capable, at least in principle, of being carried to any order—unlike procedures based on truncations. We apply the procedure to construct higher-order balance approximations of the shallow-water equations. At the lowest order quasi-geostrophy emerges. At the next order the system incorporates gradient-wind balance, although the balance relations themselves involve only linear inversions and hence are easily applied. There is a large class of reduced systems associated with various choices for the slow variables, but the simplest ones appear to be those based on potential vorticity.
Resumo:
In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.
Resumo:
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optical Observing Network (SOON), using both the number of sunspot groups, N{sub}G{\sub}, and the total area of the sunspots, A{sub}G{\sub}. In addition, we compare R with the recently developed interdiurnal variability geomagnetic indices IDV and IDV(1d). In all four cases, linearity of the relationship with R is not assumed and care is taken to ensure that the relationship of each with R is the same before and after the putative calibration change. It is shown the probability that a correction is not needed is of order 10{sup}−8{\sup} and that R is indeed too low before 1945. The optimum correction to R for values before 1945 is found to be 11.6%, 11.7%, 10.3% and 7.9% using A{sub}G{\sub}, N{sub)G{\sub}, IDV, and IDV(1d), respectively. The optimum value obtained by combining the sunspot group data is 11.6% with an uncertainty range 8.1-14.8% at the 2σ level. The geomagnetic indices provide an independent yet less stringent test but do give values that fall within the 2σ uncertainty band with optimum values are slightly lower than from the sunspot group data. The probability of the correction needed being as large as 20%, as advocated by Svalgaard [2011], is shown to be 1.6 × 10{sup}−5{\sup}.
Resumo:
This brief proposes a new method for the identification of fractional order transfer functions based on the time response resulting from a single step excitation. The proposed method is applied to the identification of a three-dimensional RC network, which can be tailored in terms of topology and composition to emulate real time systems governed by fractional order dynamics. The results are in excellent agreement with the actual network response, yet the identification procedure only requires a small number of coefficients to be determined, demonstrating that the fractional order modelling approach leads to very parsimonious model formulations.
Resumo:
The number of bidders, N, involved in a construction procurement auction is known to have an important effect on the value of the lowest bid and the mark-up applied by bidders. In practice, for example, it is important for a bidder to have a good estimate of N when bidding for a current contract. One approach, instigated by Friedman in 1956, is to make such an estimate by statistical analysis and modelling. Since then, however, finding a suitable model for N has been an enduring problem for researchers and, despite intensive research activity in the subsequent 30 years, little progress has been made, due principally to the absence of new ideas and perspectives. The debate is resumed by checking old assumptions, providing new evidence relating to concomitant variables and proposing a new model. In doing this and in order to ensure universality, a novel approach is developed and tested by using a unique set of 12 construction tender databases from four continents. This shows the new model provides a significant advancement on previous versions. Several new research questions are also posed and other approaches identified for future study.
Resumo:
More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies [foF2] had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of foF2 to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17-21. This test is carried out for the original composite of the Wolf/Zürich/International sunspot number [R], the new “backbone” group sunspot number [RBB] and the proposed “corrected sunspot number” [RC]. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - foF2 relationship. Over the interval studied here, R, RBB, and RC largely differ in their allowance for the “Waldmeier discontinuity” around 1945 (the correction factor for which for R, RBB and RC is, respectively, zero, effectively over 20 %, and explicitly 11.6 %). It is shown that for Solar Cycles 18-21, all three sunspot data sequences perform well, but that the fit residuals are lowest and most uniform for RBB. We here use foF2 for those UTs for which R, RBB, and RC all give correlations exceeding 0.99 for intervals both before and after the Waldmeier discontinuity. The error introduced by the Waldmeier discontinuity causes R to underestimate the fitted values based on the foF2 data for 1932-1945 but RBB overestimates them by almost the same factor, implying that the correction for the Waldmeier discontinuity inherent in RBB is too large by a factor of two. Fit residuals are smallest and most uniform for RC and the ionospheric data support the optimum discontinuity multiplicative correction factor derived from the independent Royal Greenwich Observatory (RGO) sunspot group data for the same interval.