33 resultados para AIR POLLUTION MONITORING

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hourly data (1994–2009) of surface ozone concentrations at eight monitoring sites have been investigated to assess target level and long–term objective exceedances and their trends. The European Union (EU) ozone target value for human health (60 ppb–maximum daily 8–hour running mean) has been exceeded for a number of years for almost all sites but never exceeded the set limit of 25 exceedances in one year. Second highest annual hourly and 4th highest annual 8–hourly mean ozone concentrations have shown a statistically significant negative trend for in–land sites of Cork–Glashaboy, Monaghan and Lough Navar and no significant trend for the Mace Head site. Peak afternoon ozone concentrations averaged over a three year period from 2007 to 2009 have been found to be lower than corresponding values over a three–year period from 1996 to 1998 for two sites: Cork–Glashaboy and Lough Navar sites. The EU long–term objective value of AOT40 (Accumulated Ozone Exposure over a threshold of 40 ppb) for protection of vegetation (3 ppm–hour, calculated from May to July) has been exceeded, on an individual year basis, for two sites: Mace Head and Valentia. The critical level for the protection of forest (10 ppm–hour from April to September) has not been exceeded for any site except at Valentia in the year 2003. AOT40–Vegetation shows a significant negative trend for a 3–year running average at Cork–Glashaboy (–0.13±0.02 ppm–hour per year), at Lough Navar (–0.05±0.02 ppm–hour per year) and at Monaghan (–0.03±0.03 ppm–hour per year–not statistically significant) sites. No statistically significant trend was observed for the coastal site of Mace head. Overall, with the exception of the Mace Head and Monaghan sites, ozone measurement records at Irish sites show a downward negative trend in peak values that affect human health and vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used the PCR to study the presence of two plant pathogens in archived wheat samples from a long-term experiment started in 1843. The data were used to construct a unique 160-yr time-series of the abundance of Phaeosphaeria nodorum and Mycosphaerella graminicola, two important pathogens of wheat. During the period since 1970, the relative abundance of DNA of these two pathogens in the samples has reflected the relative importance of the two wheat diseases they cause in U.K. disease surveys. Unexpectedly, changes in the ratio of the pathogens over the 160-yr period were very strongly correlated with changes in atmospheric pollution, as measured by SO2 emissions. This finding suggests that long-term, economically important, changes in pathogen populations can be influenced by anthropogenically induced environmental changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Splitting techniques are commonly used when large-scale models, which appear in different fields of science and engineering, are treated numerically. Four types of splitting procedures are defined and discussed. The problem of the choice of a splitting procedure is investigated. Several numerical tests, by which the influence of the splitting errors on the accuracy of the results is studied, are given. It is shown that the splitting errors decrease linearly when (1) the splitting procedure is of first order and (2) the splitting errors are dominant. Three examples for splitting procedures used in all large-scale air pollution models are presented. Numerical results obtained by a particular air pollution model, Unified Danish Eulerian Model (UNI-DEM), are given and analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recent literature proposes many variables as significant determinants of pollution. This paper gives an overview of this literature and asks which of these factors have an empirically robust impact on water and air pollution. We apply Extreme Bound Analysis (EBA) on a panel of up to 120 countries covering the period 1960–2001. We find supportive evidence of the existence of the environmental Kuznets curve for water pollution. Furthermore, mainly variables capturing the economic structure of a country affect air and water pollution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between springtime air pollution transport of ozone (O3) and carbon monoxide (CO) and mid-latitude cyclones is explored for the first time using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis for the period 2003–2012. In this study, the most intense spring storms (95th percentile) are selected for two regions, the North Pacific (NP) and the North Atlantic (NA). These storms (∼60 storms over each region) often track over the major emission sources of East Asia and eastern North America. By compositing the storms, the distributions of O3 and CO within a "typical" intense storm are examined. We compare the storm-centered composite to background composites of "average conditions" created by sampling the reanalysis data of the previous year to the storm locations. Mid-latitude storms are found to redistribute concentrations of O3 and CO horizontally and vertically throughout the storm. This is clearly shown to occur through two main mechanisms: (1) vertical lifting of CO-rich and O3-poor air isentropically, from near the surface to the mid- to upper-troposphere in the region of the warm conveyor belt; and (2) descent of O3-rich and CO-poor air isentropically in the vicinity of the dry intrusion, from the stratosphere toward the mid-troposphere. This can be seen in the composite storm's life cycle as the storm intensifies, with area-averaged O3 (CO) increasing (decreasing) between 200 and 500 hPa. The influence of the storm dynamics compared to the background environment on the composition within an area around the storm center at the time of maximum intensity is as follows. Area-averaged O3 at 300 hPa is enhanced by 50 and 36% and by 11 and 7.6% at 500 hPa for the NP and NA regions, respectively. In contrast, area-averaged CO at 300 hPa decreases by 12% for NP and 5.5% for NA, and area-averaged CO at 500 hPa decreases by 2.4% for NP while there is little change over the NA region. From the mid-troposphere, O3-rich air is clearly seen to be transported toward the surface, but the downward transport of CO-poor air is not discernible due to the high levels of CO in the lower troposphere. Area-averaged O3 is slightly higher at 1000 hPa (3.5 and 1.8% for the NP and NA regions, respectively). There is an increase of CO at 1000 hPa for the NP region (3.3%) relative to the background composite and a~slight decrease in area-averaged CO for the NA region at 1000 hPa (-2.7%).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the event of a release of toxic gas in the center of London, the emergency services would need to determine quickly the extent of the area contaminated. The transport of pollutants by turbulent flow within the complex street and building architecture of cities is not straightforward, and we might wonder whether it is at all possible to make a scientifically-reasoned decision. Here we describe recent progress from a major UK project, ‘Dispersion of Air Pollution and its Penetration into the Local Environment’ (DAPPLE, www.dapple.org.uk). In DAPPLE, we focus on the movement of airborne pollutants in cities by developing a greater understanding of atmospheric flow and dispersion within urban street networks. In particular, we carried out full-scale dispersion experiments in central London (UK) during 2003, 2004, 2007, and 2008 to address the extent of the dispersion of tracers following their release at street level. These measurements complemented previous studies because (i) our focus was on dispersion within the first kilometer from the source, when most of the material was expected to remain within the street network rather than being mixed into the boundary layer aloft, (ii) measurements were made under a wide variety of meteorological conditions, and (iii) central London represents a European, rather than North American, city geometry. Interpretation of the results from the full-scale experiments was supported by extensive numerical and wind tunnel modeling, which allowed more detailed analysis under idealized and controlled conditions. In this article, we review the full-scale DAPPLE methodologies and show early results from the analysis of the 2007 field campaign data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four perfluorocarbon tracer dispersion experiments were carried out in central London, United Kingdom in 2004. These experiments were supplementary to the dispersion of air pollution and penetration into the local environment (DAPPLE) campaign and consisted of ground level releases, roof level releases and mobile releases; the latter are believed to be the first such experiments to be undertaken. A detailed description of the experiments including release, sampling, analysis and wind observations is given. The characteristics of dispersion from the fixed and mobile sources are discussed and contrasted, in particular, the decay in concentration levels away from the source location and the additional variability that results from the non-uniformity of vehicle speed. Copyright © 2009 Royal Meteorological Society