36 resultados para ADIABATIC demagnetization

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufriere Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufriere Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that thermal evolution of the conduit walls could lead to an increase in the effective diameter of flow and an increase in flux at constant magma pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent radar and rain-gauge observations from the island of Dominica, which lies in the eastern Caribbean sea at 15 N, show a strong orographic enhancement of trade-wind precipitation. The mechanisms behind this enhancement are investigated using idealized large-eddy simulations with a realistic representation of the shallow trade-wind cumuli over the open ocean upstream of the island. The dominant mechanism is found to be the rapid growth of convection by the bulk lifting of the inhomogenous impinging flow. When rapidly lifted by the terrain, existing clouds and other moist parcels gain buoyancy relative to rising dry air because of their different adiabatic lapse rates. The resulting energetic, closely-packed convection forms precipitation readily and brings frequent heavy showers to the high terrain. Despite this strong precipitation enhancement, only a small fraction (1%) of the impinging moisture flux is lost over the island. However, an extensive rain shadow forms to the lee of Dominica due to the convective stabilization, forced descent, and wave breaking. A linear model is developed to explain the convective enhancement over the steep terrain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio calculations of the energy have been made at approximately 150 points on the two lowest singlet A' potential energy surfaces of the water molecule, 1A' and 1A', covering structures having D∞h, C∞v, C2v and Cs symmetries. The object was to obtain an ab initio surface of uniform accuracy over the whole three-dimensional coordinate space. Molecular orbitals were constructed from a double zeta plus Rydberg basis, and correlation was introduced by single and double excitations from multiconfiguration states which gave the correct dissociation behaviour. A two-valued analytical potential function has been constructed to fit these ab initio energy calculations. The adiabatic energies are given in our analytical function as the eigenvalues of a 2 2 matrix, whose diagonal elements define two diabatic surfaces. The off-diagonal element goes to zero for those configurations corresponding to surface intersections, so that our adiabatic surface exhibits the correct Σ/II conical intersections for linear configurations, and singlet/triplet intersections of the O + H2 dissociation fragments. The agreement between our analytical surface and experiment has been improved by using empirical diatomic potential curves in place of those derived from ab initio calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using coupled-cluster approach full six-dimensional analytic potential energy surfaces for two cyclic SiC3 isomers [C-C transannular bond (I) and Si-C transannular bond (II)] have been generated and used to calculate anharmonic vibrational wave functions. Several strong low-lying anharmonic resonances have been found. In both isomers already some of the fundamental transitions cannot be described within the harmonic approximation. Adiabatic electron affinities and ionization energies have been calculated as well. The Franck-Condon factors for the photodetachment processes c-SiC3-(I)-> c-SiC3(I) and c-SiC3-(II)-> c-SiC3(II) are reported. (c) 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first three electronic states (1(2)A', 2(2)A', 1(2)A '') of the C2Br radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, R-CC = 1.2621 angstrom, R-CBr = 1.7967 angstrom, < CCBr 156.1 degrees, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Sigma, Pi(1/2), Pi(3/2) vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5K have been calculated for the (CCBr)-C-12-C-12-Br-79 isotopomer, to an upper limit of 2000 cm(-1), using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new surface-crossing algorithm suitable for describing bond-breaking and bond-forming processes in molecular dynamics simulations is presented. The method is formulated for two intersecting potential energy manifolds which dissociate to different adiabatic states. During simulations, crossings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite number of time steps, after which the system is propagated on the second adiabat and the crossing is carried out with probability one. The algorithm is extensively tested (almost 0.5 mu s of total simulation time) for the rebinding of NO to myoglobin. The unbound surface ((FeNO)-N-...) is represented using a standard force field, whereas the bound surface (Fe-NO) is described by an ab initio potential energy surface. The rebinding is found to be nonexponential in time, in agreement with experimental studies, and can be described using two time constants. Depending on the asymptotic energy separation between the manifolds, the short rebinding timescale is between 1 and 9 ps, whereas the longer timescale is about an order of magnitude larger. NO molecules which do not rebind within 1 ns are typically found in the Xenon-4 pocket, indicating the high affinity of NO to this region in the protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper seeks to illustrate the point that physical inconsistencies between thermodynamics and dynamics usually introduce nonconservative production/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs). Such terms potentially give rise to undesirable forces and/or diabatic terms in the momentum and thermodynamic equations, respectively, which could explain some of the observed errors in simulated ocean currents and water masses. In this paper, a theoretical framework is developed to provide a practical method to determine such nonconservative terms, which is illustrated in the context of a relatively simple form of the hydrostatic Boussinesq primitive equation used in early versions of OGCMs, for which at least four main potential sources of energy nonconservation are identified; they arise from: (1) the “hanging” kinetic energy dissipation term; (2) assuming potential or conservative temperature to be a conservative quantity; (3) the interaction of the Boussinesq approximation with the parameterizations of turbulent mixing of temperature and salinity; (4) some adiabatic compressibility effects due to the Boussinesq approximation. In practice, OGCMs also possess spurious numerical energy sources and sinks, but they are not explicitly addressed here. Apart from (1), the identified nonconservative energy sources/sinks are not sign definite, allowing for possible widespread cancellation when integrated globally. Locally, however, these terms may be of the same order of magnitude as actual energy conversion terms thought to occur in the oceans. Although the actual impact of these nonconservative energy terms on the overall accuracy and physical realism of the oceans is difficult to ascertain, an important issue is whether they could impact on transient simulations, and on the transition toward different circulation regimes associated with a significant reorganization of the different energy reservoirs. Some possible solutions for improvement are examined. It is thus found that the term (2) can be substantially reduced by at least one order of magnitude by using conservative temperature instead of potential temperature. Using the anelastic approximation, however, which was initially thought as a possible way to greatly improve the accuracy of the energy budget, would only marginally reduce the term (4) with no impact on the terms (1), (2) and (3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adiabatic transit time of wave energy radiated by an Agulhas ring released in the South Atlantic Ocean to the North Atlantic Ocean is investigated in a two-layer ocean model. Of particular interest is the arrival time of baroclinic energy in the northern part of the Atlantic, because it is related to variations in the meridional overturning circulation. The influence of the Mid-Atlantic Ridge is also studied, because it allows for the conversion from barotropic to baroclinic wave energy and the generation of topographic waves. Barotropic energy from the ring is present in the northern part of the model basin within 10 days. From that time, the barotropic energy keeps rising to attain a maximum 500 days after initiation. This is independent of the presence or absence of a ridge in the model basin. Without a ridge in the model, the travel time of the baroclinic signal is 1300 days. This time is similar to the transit time of the ring from the eastern to the western coast of the model basin. In the presence of the ridge, the baroclinic signal arrives in the northern part of the model basin after approximately 10 days, which is the same time scale as that of the barotropic signal. It is apparent that the ridge can facilitate the energy conversion from barotropic to baroclinic waves and the slow baroclinic adjustment can be bypassed. The meridional overturning circulation, parameterized in two ways as either a purely barotropic or a purely baroclinic phenomenon, also responds after 1300 days. The ring temporarily increases the overturning strength. Th presence of the ridge does not alter the time scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 6 0.07 K decade21 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 Kdecade21 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces awestward acceleration of the lower-stratosphericwind over theAntarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade21 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (;70 hPa) increases by almost 2% decade21, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesospheric temperature inversions are well established observed phenomena, yet their properties remain the subject of ongoing research. Comparisons between Rayleigh-scatter lidar temperature measurements obtained by the University of Western Ontario's Purple Crow Lidar (42.9°N, 81.4°W) and the Canadian Middle Atmosphere Model are used to quantify the statistics of inversions. In both model and measurements, inversions occur most frequently in the winter and exhibit an average amplitude of ∼10 K. The model exhibits virtually no inversions in the summer, while the measurements show a strongly reduced frequency of occurrence with an amplitude about half that in the winter. A simple theory of mesospheric inversions based on wave saturation is developed, with no adjustable parameters. It predicts that the environmental lapse rate must be less than half the adiabatic lapse rate for an inversion to form, and it predicts the ratio of the inversion amplitude and thickness as a function of environmental lapse rate. Comparison of this prediction to the actual amplitude/thickness ratio using the lidar measurements shows good agreement between theory and measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The robustness of the parameterized gravity wave response to an imposed radiative perturbation in the middle atmosphere is examined. When momentum is conserved and for reasonable gravity wave drag parameters, the response to a polar cooling induces polar downwelling above the region of the imposed cooling, with consequent adiabatic warming. This response is robust to changes in the gravity wave source spectrum, background flow, gravity wave breaking criterion, and model lid height. When momentum is not conserved, either in the formulation or in the implementation of the gravity wave drag parameterization, the response becomes sensitive to the above-mentioned factors—in particular to the model lid height. The spurious response resulting from nonconservation is found to be nonnegligible in terms of the total gravity wave drag–induced downwelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this lecture is to review recent development in data analysis, initialization and data assimilation. The development of 3-dimensional multivariate schemes has been very timely because of its suitability to handle the many different types of observations during FGGE. Great progress has taken place in the initialization of global models by the aid of non-linear normal mode technique. However, in spite of great progress, several fundamental problems are still unsatisfactorily solved. Of particular importance is the question of the initialization of the divergent wind fields in the Tropics and to find proper ways to initialize weather systems driven by non-adiabatic processes. The unsatisfactory ways in which such processes are being initialized are leading to excessively long spin-up times.