2 resultados para ADDER
em CentAUR: Central Archive University of Reading - UK
Resumo:
Both the (5,3) counter and (2,2,3) counter multiplication techniques are investigated for the efficiency of their operation speed and the viability of the architectures when implemented in a fast bipolar ECL technology. The implementation of the counters in series-gated ECL and threshold logic are contrasted for speed, noise immunity and complexity, and are critically compared with the fastest practical design of a full-adder. A novel circuit technique to overcome the problems of needing high fan-in input weights in threshold circuits through the use of negative weighted inputs is presented. The authors conclude that a (2,2,3) counter based array multiplier implemented in series-gated ECL should enable a significant increase in speed over conventional full adder based array multipliers.
Resumo:
The authors compare various array multiplier architectures based on (p,q) counter circuits. The tradeoff in multiplier design is always between adding complexity and increasing speed. It is shown that by using a (2,2,3) counter cell it is possible to gain a significant increase in speed over a conventional full-adder, carry-save array based approach. The increase in complexity should be easily accommodated using modern emitter-coupled-logic processes.