2 resultados para ADDED COHERENT STATES
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new formal approach for representation of polarization states of coherent and partially coherent electromagnetic plane waves is presented. Its basis is a purely geometric construction for the normalised complex-analytic coherent wave as a generating line in the sphere of wave directions, and whose Stokes vector is determined by the intersection with the conjugate generating line. The Poincare sphere is now located in physical space, simply a coordination of the wave sphere, its axis aligned with the wave vector. Algebraically, the generators representing coherent states are represented by spinors, and this is made consistent with the spinor-tensor representation of electromagnetic theory by means of an explicit reference spinor we call the phase flag. As a faithful unified geometric representation, the new model provides improved formal tools for resolving many of the geometric difficulties and ambiguities that arise in the traditional formalism.
Resumo:
The congruential rule advanced by Graves for polarization basis transformation of the radar backscatter matrix is now often misinterpreted as an example of consimilarity transformation. However, consimilarity transformations imply a physically unrealistic antilinear time-reversal operation. This is just one of the approaches found in literature to the description of transformations where the role of conjugation has been misunderstood. In this paper, the different approaches are examined in particular in respect to the role of conjugation. In order to justify and correctly derive the congruential rule for polarization basis transformation and properly place the role of conjugation, the origin of the problem is traced back to the derivation of the antenna height from the transmitted field. In fact, careful consideration of the role played by the Green’s dyadic operator relating the antenna height to the transmitted field shows that, under general unitary basis transformation, it is not justified to assume a scalar relationship between them. Invariance of the voltage equation shows that antenna states and wave states must in fact lie in dual spaces, a distinction not captured in conventional Jones vector formalism. Introducing spinor formalism, and with the use of an alternate spin frame for the transmitted field a mathematically consistent implementation of the directional wave formalism is obtained. Examples are given comparing the wider generality of the congruential rule in both active and passive transformations with the consimilarity rule.