99 resultados para ADAPTIVE NEURAL NETWORKS

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special section contains papers addressing various aspects associated with the issue Of Cultured neural networks. These are networks, that are formed through the monitored growth of biological neural tissue. In keeping with the aims of the International Journal of Adaptive Control and Signal Processing, the key focus of these papers is to took at particular aspects of signal processing in terms of both stimulating such a network and in assigning intent to signals collected as network outputs. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the integration of radial basis function (RBF) networks into the industrial software control package Connoisseur. The paper shows the improved modelling capabilities offered by RBF networks within the Connoisseur environment compared to linear modelling techniques such as recursive least squares. The paper also goes on to mention the way this improved modelling capability, obtained through the RBF networks will be utilised within Connoisseur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of endgame databases challenges us to extract higher-grade information and knowledge from their basic data content. Chess players, for example, would like simple and usable endgame theories if such holy grail exists: endgame experts would like to provide such insights and be inspired by computers to do so. Here, we investigate the use of artificial neural networks (NNs) to mine these databases and we report on a first use of NNs on KPK. The results encourage us to suggest further work on chess applications of neural networks and other data-mining techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human electroencephalogram (EEG) is globally characterized by a 1/f power spectrum superimposed with certain peaks, whereby the "alpha peak" in a frequency range of 8-14 Hz is the most prominent one for relaxed states of wakefulness. We present simulations of a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random graph (an Erdos-Renyi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden change of the network's topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power spectra of simulated EEG time series exhibit a 1/f continuum superimposed with certain peaks. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than thirty years ago, Amari and colleagues proposed a statistical framework for identifying structurally stable macrostates of neural networks from observations of their microstates. We compare their stochastic stability criterion with a deterministic stability criterion based on the ergodic theory of dynamical systems, recently proposed for the scheme of contextual emergence and applied to particular inter-level relations in neuroscience. Stochastic and deterministic stability criteria for macrostates rely on macro-level contexts, which make them sensitive to differences between different macro-levels.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present the initial results using an artificial neural network to predict the onset of Parkinson's Disease tremors in a human subject. Data for the network was obtained from implanted deep brain electrodes. A tuned artificial neural network was shown to be able to identify the pattern of the onset tremor from these real time recordings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the possibility of using an artificial neural network to accurately identify the onset of Parkinson’s Disease tremors in human subjects. Data for the network is obtained by means of deep brain implantation in the human brain. Results presented have been obtained from a practical study (i.e. real not simulated data) but should be regarded as initial trials to be discussed further. It can be seen that a tuned artificial neural network can act as an extremely effective predictor in these circumstances.