63 resultados para ACUTE DYSPNEA
em CentAUR: Central Archive University of Reading - UK
Resumo:
The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform bursting induced by 100M4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. It may also uncover additional modes of action that contribute to anti-epileptiform drug effects
Resumo:
In a series of experiments the toxicity of lead to worms in soil was determined following the draft OECD earthworm reproduction toxicity protocol except that lead was added as solid lead nitrate, carbonate and sulphide rather than as lead nitrate solution as would normally be the case. The compounds were added to the test soil to give lead concentrations of 625-12500 pg Pb g-1 of soil. Calculated toxicities of the lead decreased in the order nitrate > carbonate > sulphide, the same order as the decrease in the solubility of the metal compounds used. The 7-day LC50 (lethal concentration when 50% of the population is killed) for the nitrate was 5321 +/- 275 mug Pb g(-1) of soil and this did not change with time. The LC50 values for carbonate and sulphide could not be determined at the concentration ranges used. The only parameter sensitive enough to distinguish the toxicities of the three compounds was cocoon (egg) production. The EC50S for cocoon production (the concentration to produce a 50% reduction in cocoon production) were 993, 8604 and 10 246 mug Pb g(-1) of soil for lead nitrate, carbonate and sulphide, respectively. Standard toxicity tests need to take into account the form in which the contaminant is present in the soil to be of environmental relevance. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Field populations of earthworms have shown a varied response in mortality to the fungicide carbendazim, the toxic reference substance used in agrochemical field trials. The aim of this study was to determine the influence of soil conditions as a potential cause of this variation. Laboratory acute toxicity tests were conducted using a range of artificial soils with varying soil components (organic matter, clay, pH and moisture). Batch adsorption/desorption studies were run to determine the influence of the soil properties on carbendazim behaviour. Adsorption was shown to be correlated with organic matter content and pH and this in turn could be linked to Eisenia fetida mortality, with lower mortality occurring with increased adsorption. Overall while E.fetida mortality did vary significantly between several of the soils the calculated LC50 values in the different soils did not cover a wide range (6.04-16.00 mg kg(-1)), showing that under these laboratory conditions soil components did not greatly influence carbendazim toxicity to E.fietida. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Background: Leptin is produced predominantly by white adipocytes; in adults it regulates appetite and energy expenditure but its role in the neonate remains to be fully established. Objectives: To examine the effects of acute administration of recombinant human leptin on the endocrine profile and thermoregulation of neonatal pigs. Methods: 24 pairs of siblings (n = 48) were administered with either a single dose (4 mu g ml(-1) kg(-1) body weight) of leptin (L: n = 24) or a placebo (P: n = 24) on day 6 of neonatal life. Rectal temperature was recorded, and tissue samples were taken at 1 (n = 12), 2 (n = 12), 4 (n = 12) or 6 (n = 12) hours post-administration. Plasma concentrations of hormones and metabolites were determined in conjunction with messenger RNA (mRNA) for leptin and uncoupling protein-2. Results: Plasma leptin increased following leptin administration, and differences in concentrations of insulin, thyroxine and non-esterified fatty acids were observed between the two groups. Initially, rectal temperature decreased in L pigs but returned to start values by 1.5 h. This decline in rectal temperature was delayed in placebo animals, resulting in differences between treatments at 1.5 and 2 h. Conclusions: Acute leptin administration alters the endocrine profile of pigs and influences the thermoregulatory ability of the neonate. Copyright (C) 2007 S. Karger AG, Basel.
Resumo:
The conventional method for assessing acute oral toxicity (OECD Test Guideline 401) was designed to identify the median lethal dose (LD50), using the death of animals as an endpoint. Introduced as an alternative method (OECD Test Guideline 420), the Fixed Dose Procedure (FDP) relies on the observation of clear signs of toxicity, uses fewer animals and causes less suffering. More recently, the Acute Toxic Class method and the Up-and-Down Procedure have also been adopted as OECD test guidelines. Both of these methods also use fewer animals than the conventional method, although they still use death as an endpoint. Each of the three new methods incorporates a sequential dosing procedure, which results in increased efficiency. In 1999, with a view to replacing OECD Test Guideline 401, the OECD requested that the three new test guidelines be updated. This was to bring them in line with the regulatory needs of all OECD Member Countries, provide further reductions in the number of animals used, and introduce refinements to reduce the pain and distress experienced by the animals. This paper describes a statistical modelling approach for the evaluation of acute oral toxicity tests, by using the revised FDP for illustration. Opportunities for further design improvements are discussed.
Resumo:
The conventional method for the assessment of acute dermal toxicity (OECD Test Guideline 402, 1987) uses death of animals as an endpoint to identify the median lethal dose (LD50). A new OECD Testing Guideline called the dermal fixed dose procedure (dermal FDP) is being prepared to provide an alternative to Test Guideline 402. In contrast to Test Guideline 402, the dermal FDP does not provide a point estimate of the LD50, but aims to identify that dose of the substance under investigation that causes clear signs of nonlethal toxicity. This is then used to assign classification according to the new Globally Harmonised System of Classification and Labelling scheme (GHS). The dermal FDP has been validated using statistical modelling rather than by in vivo testing. The statistical modelling approach enables calculation of the probability of each GHS classification and the expected numbers of deaths and animals used in the test for imaginary substances with a range of LD50 values and dose-response curve slopes. This paper describes the dermal FDP and reports the results from the statistical evaluation. It is shown that the procedure will be completed with considerably less death and suffering than guideline 402, and will classify substances either in the same or a more stringent GHS class than that assigned on the basis of the LD50 value.
Statistical evaluation of the fixed concentration procedure for acute inhalation toxicity assessment
Resumo:
The conventional method for the assessment of acute inhalation toxicity (OECD Test Guideline 403, 1981) uses death of animals as an endpoint to identify the median lethal concentration (LC50). A new OECD Testing Guideline called the Fixed Concentration Procedure (FCP) is being prepared to provide an alternative to Test Guideline 403. Unlike Test Guideline 403, the FCP does not provide a point estimate of the LC50, but aims to identify an airborne exposure level that causes clear signs of nonlethal toxicity. This is then used to assign classification according to the new Globally Harmonized System of Classification and Labelling scheme (GHS). The FCP has been validated using statistical simulation rather than byin vivo testing. The statistical simulation approach predicts the GHS classification outcome and the numbers of deaths and animals used in the test for imaginary substances with a range of LC50 values and dose response curve slopes. This paper describes the FCP and reports the results from the statistical simulation study assessing its properties. It is shown that the procedure will be completed with considerably less death and suffering than Test Guideline 403, and will classify substances either in the same or a more stringent GHS class than that assigned on the basis of the LC50 value.
Resumo:
Background: The care of the acutely ill patient in hospital is often sub-optimal. Poor recognition of critical illness combined with a lack of knowledge, failure to appreciate the clinical urgency of a situation, a lack of supervision, failure to seek advice and poor communication have been identified as contributory factors. At present the training of medical students in these important skills is fragmented. The aim of this study was to use consensus techniques to identify the core competencies in the care of acutely ill or arrested adult patients that medical students should possess at the point of graduation. Design: Healthcare professionals were invited to contribute suggestions for competencies to a website as part of a modified Delphi survey. The competency proposals were grouped into themes and rated by a nominal group comprised of physicians, nurses and students from the UK. The nominal group rated the importance of each competency using a 5-point Likert scale. Results: A total of 359 healthcare professionals contributed 2,629 competency suggestions during the Delphi survey. These were reduced to 88 representative themes covering: airway and oxygenation; breathing and ventilation; circulation; confusion and coma; drugs, therapeutics and protocols; clinical examination; monitoring and investigations; team-working, organisation and communication; patient and societal needs; trauma; equipment; pre-hospital care; infection and inflammation. The nominal group identified 71 essential and 16 optional competencies which students should possess at the point of graduation. Conclusions: We propose these competencies form a core set for undergraduate training in resuscitation and acute care.
Resumo:
Background: In a prospective observational study, we examined the temporal relationships between serum erythropoietin (EPO) levels, haemoglobin concentration and the inflammatory response in critically ill patients with and without acute renal failure (ARF). Patients and method Twenty-five critically ill patients, from general and cardiac intensive care units (ICUs) in a university hospital, were studied. Eight had ARF and 17 had normal or mildly impaired renal function. The comparator group included 82 nonhospitalized patients with normal renal function and varying haemoglobin concentrations. In the patients, levels of haemoglobin, serum EPO, C-reactive protein, IL-1β, IL-6, serum iron, ferritin, vitamin B12 and folate were measured, and Coombs test was performed from ICU admission until discharge or death. Concurrent EPO and haemoglobin levels were measured in the comparator group. Results: EPO levels were initially high in patients with ARF, falling to normal or low levels by day 3. Thereafter, almost all ICU patients demonstrated normal or low EPO levels despite progressive anaemia. IL-6 exhibited a similar initial pattern, but levels remained elevated during the chronic phase of critical illness. IL-1β was undetectable. Critically ill patients could not be distinguished from nonhospitalized anaemic patients on the basis of EPO levels. Conclusion: EPO levels are markedly elevated in the initial phase of critical illness with ARF. In the chronic phase of critical illness, EPO levels are the same for patients with and those without ARF, and cannot be distinguished from noncritically ill patients with varying haemoglobin concentrations. Exogenous EPO therapy is unlikely to be effective in the first few days of critical illness.
Resumo:
The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for "middle of the SARS-unique domain") in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1 ''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.
Resumo:
The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.
Resumo:
Background and Purpose-Clinical research into the treatment of acute stroke is complicated, is costly, and has often been unsuccessful. Developments in imaging technology based on computed tomography and magnetic resonance imaging scans offer opportunities for screening experimental therapies during phase II testing so as to deliver only the most promising interventions to phase III. We discuss the design and the appropriate sample size for phase II studies in stroke based on lesion volume. Methods-Determination of the relation between analyses of lesion volumes and of neurologic outcomes is illustrated using data from placebo trial patients from the Virtual International Stroke Trials Archive. The size of an effect on lesion volume that would lead to a clinically relevant treatment effect in terms of a measure, such as modified Rankin score (mRS), is found. The sample size to detect that magnitude of effect on lesion volume is then calculated. Simulation is used to evaluate different criteria for proceeding from phase II to phase III. Results-The odds ratios for mRS correspond roughly to the square root of odds ratios for lesion volume, implying that for equivalent power specifications, sample sizes based on lesion volumes should be about one fourth of those based on mRS. Relaxation of power requirements, appropriate for phase II, lead to further sample size reductions. For example, a phase III trial comparing a novel treatment with placebo with a total sample size of 1518 patients might be motivated from a phase II trial of 126 patients comparing the same 2 treatment arms. Discussion-Definitive phase III trials in stroke should aim to demonstrate significant effects of treatment on clinical outcomes. However, more direct outcomes such as lesion volume can be useful in phase II for determining whether such phase III trials should be undertaken in the first place. (Stroke. 2009;40:1347-1352.)
Resumo:
Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.
Resumo:
Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.
Resumo:
This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.