4 resultados para AAA
em CentAUR: Central Archive University of Reading - UK
Resumo:
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Resumo:
The title compound, [Al(HPO4)(H2PO4)(C10H8N2)]n, consists of AlO4N2 octahedra vertex-linked to H2PO4 and HPO4 tetrahedra to form layers based on a (4,12)- net. The layers stack in an AAA fashion, held in place by pi-pi interactions between 2,2 '-bipyridine molecules coordinated to Al atoms in adjacent layers.
Resumo:
This paper examines the effects of liquidity during the 2007–09 crisis, focussing on the Senior Tranche of the CDX.NA.IG Index and on Moody's AAA Corporate Bond Index. It aims to understand whether the sharp increase in the credit spreads of these AAA-rated credit indices can be explained by worse credit fundamentals alone or whether it also reflects a lack of depth in the relevant markets, the scarcity of risk-capital, and the liquidity preference exhibited by investors. Using cointegration analysis and error correction models, the paper shows that during the crisis lower market and funding liquidity are important drivers of the increase in the credit spread of the AAA-rated structured product, whilst they are less significant in explaining credit spread changes for a portfolio of unstructured credit instruments. Looking at the experience of the subprime crisis, the study shows that when the conditions under which securitisation can work properly (liquidity, transparency and tradability) suddenly disappear, investors are left highly exposed to systemic risk.