7 resultados para 75-530
em CentAUR: Central Archive University of Reading - UK
Resumo:
Human breast cancer cells (MCF-7, T-47-D and ZR-75-1) can adapt to circumvent any reduced growth rate during long-term oestrogen deprivation, and this provides three model systems to investigate mechanisms of endocrine resistance in breast cancer. In this paper we report consistent differences in the effects of three growth inhibitors following long-term oestrogen deprivation in all three cell models. Long-term oestrogen deprivation of MCF-7, T-47-D and ZR-75-1 cells resulted in reduced growth inhibition by PD98059 (2–10 µg/ml), implying a loss of dependence on mitogen-activated protein kinase pathways for growth. The growth inhibitor LY294002 (2–10 µM) inhibited growth of both oestrogen-maintained and oestrogen-deprived cells with similar dose–responses, implying continued similar dependence on phosphoinositide 3-kinase (PI3K) pathways with no alteration after adaptation to oestrogen independent growth. However, by contrast, long-term oestrogen deprivation resulted in an increased sensitivity to growth inhibition by rapamycin, which was not reduced by readdition of oestradiol. The enhanced inhibition of long-term oestrogen-deprived MCF-7-ED, T-47-D-ED and ZR-75-1-ED cell growth by combining rapamycin with LY294002 at concentrations where each alone had little effect, offers preclinical support to the development of therapeutic combinations of rapamycin analogues with other PI3K inhibitors in endocrine-resistant breast cancer.
Resumo:
Enterobacter sakazakii is an uncommon bacterium that is known to cause severe neonatal infection and is rare among adults. We present a peculiar case of E. sakazakii bacteraemia with multiple splenic abscesses in a 75-year-old institutionalised woman, who was successfully treated with 6 weeks of imipenem and percutaneous drainage of the abscesses.
Resumo:
Glutathione-S-transferase (GST)-Grb2 fusion proteins have been used to identify the potential role of Grb2-binding proteins in platelet activation by the platelet low-affinity IgG receptor, Fc gamma RIIA. Two tyrosine phosphoproteins of 38 and 63 kD bind to the SH2 domain of Grb2 following Fc gamma RIIA stimulation of platelets. Both are located in the particulate fraction following platelet activation and are also able to bind to a GST-construct containing the SH2 and SH3 domains of phospholipase C gamma 1. p38 also forms a complex with the tyrosine kinase csk in stimulated cells and is a substrate for the kinase. The SH3 domains of Grb2 form a stable complex with SOS1 and two proteins of 75 kD and 120 kD, which undergo tyrosine phosphorylation in Fc gamma RIIA stimulated cells. The 75-kD protein is recognized by antibodies to SLP-76, which has recently been isolated from T cells and sequenced. Tyrosine phosphorylation of p38 and p63 is also observed in platelets stimulated by the tyrosine kinase-linked receptor agonist collagen and by the G protein-coupled receptor agonist thrombin, although phosphorylation of SLP-76 is only observed in collagen-stimulated platelets. p38 and p63 may provide a docking site for Grb2, thereby linking Grb2 SH3-binding proteins SOS1, SLP-76, and p120 to downstream signalling events.
Resumo:
In 1938, Guy Stewart Callendar was the first to demonstrate that the Earth’s land surface was warming. Callendar also suggested that the production of carbon dioxide by the combustion of fossil fuels was responsible for much of this modern change in climate. This short note marks the 75th anniversary of Callendar’s landmark study and demonstrates that his global land temperature estimates agree remarkably well with more recent analyses.