7 resultados para 500 m NE of Gondwana Station
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Madden-Julian oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The Fly River system, Papua New Guinea, is one of the wettest regions on Earth and is at the heart of the MJO envelope. A 16 year time series of daily precipitation at 15 stations along the river system exhibits strong MJO modulation in rainfall. At each station, the difference in rainfall rate between active and suppressed MJO conditions is typically 40% of the station mean. The spread of rainfall between individual MJO events was small enough such that the rainfall distributions between wet and dry phases of the MJO were clearly separated at the catchment level. This implies that successful prediction of the large-scale MJO envelope will have a practical use for forecasting local rainfall. In the steep topography of the New Guinea Highlands, the mean and MJO signal in station precipitation is twice that in the satellite Tropical Rainfall Measuring Mission 3B42HQ product, emphasizing the need for ground-truthing satellite-based precipitation measurements. A clear MJO signal is also present in the river level, which peaks simultaneously with MJO precipitation input in its upper reaches but lags the precipitation by approximately 18 days on the flood plains.
Resumo:
Extracts from Piper guineense, Aframomum melegueta, Aframomum citratum and Afrostyrax kamerunensis were investigated for their antifeedant, lethal and developmental effects against Plutella xylostella larvae through laboratory dual-choice tests and topical application. Water and ethanol extracts of P. guineense were dose-dependent antifeedants at concentrations ≥300 and 500 ppm, respectively, whilst methanol extracts required ≥1,000 ppm. Methanol and hexane extracts of A. melegueta acted at ≥100 ppm and water extracts at ≥300 ppm, but ethanol extracts were deterring feeding only slightly at ≥1,000 ppm. Hexane and methanol extracts of A. citratum inhibited feeding at ≥300 ppm and water extracts did so at ≥500 ppm. None of the Afrostyrax kamerunensis extracts deterred feeding at any of the concentrations tested. No mortality was observed at any of the concentrations after topical application of the extracts on the larvae. However, the effects on larval development varied with extract concentration and larval age. Ingestion of the water and ethanol extracts of P. guineense caused 100% mortality of second instars at ≥100 ppm two to three days after infestation (DAI). Methanol and water extracts of A. melegueta and A. citratum, respectively, achieved ≥80% mortality of larvae at concentrations of ≥500 ppm and ≥1,000 ppm, respectively. With third instars, the mortalities were significantly lower; however, the P. guineense water or ethanol extracts caused 100% mortality two to four DAI. Larvae that survived till pupation had significantly longer larval periods compared with the control after application of A. melegueta extracts. We concluded that potent extracts from Aframomum melegueta, Aframomum citratum and especially P. guineense could be used as complementary measures in the management of P. xylostella by subsistence farmers.
Resumo:
The objective was to measure effects of 3-nitrooxypropanol (3NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and nitrogen metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and nitrogen balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3NP. Similarly, the decrease in nitrogen digestibility at the higher dose of the product was associated with a decrease in body nitrogen balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3NP. Twice-daily rumen dosing of 3NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product. Key words: 3-nitrooxypropanol, methane, digestion, rumen, dairy cow
Resumo:
Time series of global and regional mean Surface Air Temperature (SAT) anomalies are a common metric used to estimate recent climate change. Various techniques can be used to create these time series from meteorological station data. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques relative to the reanalysis reference. Kriging techniques provided the smallest errors in estimates of Arctic anomalies and Simple Kriging was often the best kriging method in this study, especially over sea ice. A linear interpolation technique had, on average, Root Mean Square Errors (RMSEs) up to 0.55 K larger than the two kriging techniques tested. Non-interpolating techniques provided the least representative anomaly estimates. Nonetheless, they serve as useful checks for confirming whether estimates from interpolating techniques are reasonable. The interaction of meteorological station coverage with estimation techniques between 1850 and 2011 was simulated using an ensemble dataset comprising repeated individual years (1979-2011). All techniques were found to have larger RMSEs for earlier station coverages. This supports calls for increased data sharing and data rescue, especially in sparsely observed regions such as the Arctic.
Resumo:
Palaeoclimates across Europe for 6000 y BP were estimated from pollen data using the modern pollen analogue technique constrained with lake-level data. The constraint consists of restricting the set of modern pollen samples considered as analogues of the fossil samples to those locations where the implied change in annual precipitation minus evapotranspiration (P–E) is consistent with the regional change in moisture balance as indicated by lakes. An artificial neural network was used for the spatial interpolation of lake-level changes to the pollen sites, and for mapping palaeoclimate anomalies. The climate variables reconstructed were mean temperature of the coldest month (T c ), growing degree days above 5 °C (GDD), moisture availability expressed as the ratio of actual to equilibrium evapotranspiration (α), and P–E. The constraint improved the spatial coherency of the reconstructed palaeoclimate anomalies, especially for P–E. The reconstructions indicate clear spatial and seasonal patterns of Holocene climate change, which can provide a quantitative benchmark for the evaluation of palaeoclimate model simulations. Winter temperatures (T c ) were 1–3 K greater than present in the far N and NE of Europe, but 2–4 K less than present in the Mediterranean region. Summer warmth (GDD) was greater than present in NW Europe (by 400–800 K day at the highest elevations) and in the Alps, but >400 K day less than present at lower elevations in S Europe. P–E was 50–250 mm less than present in NW Europe and the Alps, but α was 10–15% greater than present in S Europe and P–E was 50–200 mm greater than present in S and E Europe.
Resumo:
Thrift [2008. Non-representational theory: space, politics, affect, 65. Abingdon: Routledge] has identified disenchantment as “[o]ne of the most damaging ideas” within social scientific and humanities research. As we have argued elsewhere, “[m]etanarratives of disenchantment and their concomitant preoccupation with destructive power go some way toward accounting for the overwhelmingly ‘critical’ character of geographical theory over the last 40 years” [Woodyer, T. and Geoghegan, H., 2013. (Re)enchanting geography? The nature of being critical and the character of critique in human geography. Progress in Human Geography, 37 (2), 195–214]. Through its experimentation with different ways of working and writing, cultural geography plays an important role in challenging extant habits of critical thinking. In this paper, we use the concept of “enchantment” to make sense of the deep and powerful affinities exposed in our research experiences and how these might be used to pursue a critical, yet more cheerful way of engaging with the geographies of the world.
Resumo:
The interaction between polynyas and the atmospheric boundary layer is examined in the Laptev Sea using the regional, non-hydrostatic Consortium for Small-scale Modelling (COSMO) atmosphere model. A thermodynamic sea-ice model is used to consider the response of sea-ice surface temperature to idealized atmospheric forcing. The idealized regimes represent atmospheric conditions that are typical for the Laptev Sea region. Cold wintertime conditions are investigated with sea-ice–ocean temperature differences of up to 40 K. The Laptev Sea flaw polynyas strongly modify the atmospheric boundary layer. Convectively mixed layers reach heights of up to 1200 m above the polynyas with temperature anomalies of more than 5 K. Horizontal transport of heat expands to areas more than 500 km downstream of the polynyas. Strong wind regimes lead to a more shallow mixed layer with strong near-surface modifications, while weaker wind regimes show a deeper, well-mixed convective boundary layer. Shallow mesoscale circulations occur in the vicinity of ice-free and thin-ice covered polynyas. They are forced by large turbulent and radiative heat fluxes from the surface of up to 789 W m−2, strong low-level thermally induced convergence and cold air flow from the orographic structure of the Taimyr Peninsula in the western Laptev Sea region. Based on the surface energy balance we derive potential sea-ice production rates between 8 and 25 cm d−1. These production rates are mainly determined by whether the polynyas are ice-free or covered by thin ice and by the wind strength.