2 resultados para 5.8S

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. Methods and Results: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. Conclusions: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. Significance and Impact of the Study: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360 Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes. The resulting phylogenetic clades were evaluated for application of existing species names and five novel species are introduced. Eleven species are epi-, lecto- or neotypified in this study. Although existing species names were available for several clades, it was not always possible to apply North American or European names to African or Asian strains and vice versa. Some species were found to be limited to a specific host genus, whereas others were isolated from a wide host range. No single locus was found to be the ideal DNA barcode gene for the genus, and species identification needs to be based on a combination of gene loci and morphological characters. Additional primers were developed to supplement those previously published for amplification of the loci used in this study. TAXONOMIC NOVELTIES: New species - Cercospora coniogrammes Crous & R.G. Shivas, Cercospora delaireae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora euphorbiae-sieboldianae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora pileicola C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora vignigena C. Nakash., Crous, U. Braun & H.D. Shin. Typifications: epitypifications - Cercospora alchemillicola U. Braun & C.F. Hill, Cercospora althaeina Sacc., Cercospora armoraciae Sacc., Cercospora corchori Sawada, Cercospora mercurialis Pass., Cercospora olivascens Sacc., Cercospora violae Sacc.; neotypifications - Cercospora fagopyri N. Nakata & S. Takim., Cercospora sojina Hara.