5 resultados para 38-340

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty-multiparous Holstein cows were used in a 16-wk continuous design study to determine the effects of either selenium (Se) source, selenized yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060 Sel-Plex®) or sodium selenite (SS), or inclusion rate of SY on Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a TMR with 1:1 forage:concentrate ratio on a dry matter (DM) basis. There were four diets (T1-T4) which differed only in either source or dose of Se additive. Estimated total dietary Se for T1 (no supplement), T2 (SS), T3 (SY) and T4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28 day intervals and at each time point there were positive linear effects of SY on Se concentration in blood and milk. At day 112 blood and milk Se values for T1-T4 were 177, 208, 248, 279 ± 6.6 and 24, 38, 57, 72 ± 3.7 ng/g fresh material, respectively and indicate improved uptake and incorporation of Se from SY. While selenocysteine (SeCys) was the main selenised amino acid in blood its concentration was not markedly affected by treatment, but the proportion of total Se as selenomethionine (SeMet) increased with increasing inclusion rate of SY. In milk, there were no marked treatment effects on SeCys content, but Se source had a marked effect on the proportion of total Se as SeMet. At day 112 replacing SS (T2) with SY (T3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157 ng Se/g as the inclusion rate of SY increased further (T4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate effected the keeping quality of milk. At day 112, milk from T1, T2, and T3 was made into a hard cheese and Se source had a marked effect on total Se and the proportion of total Se comprised as either SeMet or SeCys. Replacing SS (T2) with SY (T3) increased total Se, SeMet and SeCys content from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g, respectively. Key words: dairy cow, milk and cheese, selenomethionine, selenocysteine, milk keeping quality

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty multiparous Holstein cows were used in a 16-week continuous design study to determine the effects of either selenium (Se) source, selenised yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM 1-3060) or sodium selenite (SS), or Se inclusion rate in the form of SY in the diets of lactating dairy cows on the Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a total mixed ration (TMR) with a 1 : 1 forage: concentrate ratio on a dry matter (DM) basis. There were four diets (T-1 to T-4), which differed only in either source or dose of Se additive. Estimated total dietary Se for T, (no supplement), T-2 (SS), T-3 (SY) and T-4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28-day intervals and at each time point there were positive linear effects of Se in the form of SY on the Se concentration in blood and milk. At day 112 blood and milk Se values for T-1 to T-4 were 177, 208, 248 and 279 +/- 6.6 and 24, 38, 57 and 72 +/- 3.7 ng/g fresh material, respectively, and indicate improved uptake and incorporation of Se from SY. In whole blood, selenocysteine (SeCys) was the main selenised amino acid and the concentration of selenomethionine (SeMet) increased with the increasing inclusion rate of SY In milk, there were no marked treatment effects on the SeCys content, but Se source had a marked effect on the concentration of SeMet. At day 112 replacing SS (T-2) with SY (T-3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157ng Se/g dried sample as the inclusion rate of SY increased further (T-4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate affected the keeping quality of milk. At day 112 milk from T-1, T-2 and T-3 was made into a hard cheese and Se source had a marked effect on total Se and the concentration of total Se comprised as either SeMet or SeCys. Replacing SS (T-2) with SY (T-3) increased total Se, SeMet and SeCys content in cheese from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g dried sample, respectively. The use of SY to produce food products with enhanced Se content as a means of meeting the Se requirements is discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully susceptible genotype (4106A) of Myzus persicae survived the longest on an artificial diet and, in several of the eight replicates, monitoring was terminated when the culture was still thriving. A genotype with elevated carboxylesterase FE4 at the R3 level (800F) had a mean survival of only 98.13 days, whereas 794J, which combines R3 E4 carboxylesterase with target-site resistance (knockdown resistance), survived for the even shorter mean time of 84.38 days. The poorer survival of the two genotypes with extremely elevated carboxylesterase-resistance was not the result of a reluctance to transfer to new diet at each diet change. Although available for only two replicates, a revertant clone of 794J (794Jrev), which has the same genotype as 794J but the amplified E4 genes are not expressed leading to a fully susceptible phenotype, did not appear to survive any better than this clone. This suggests that the poor survival on an artificial diet of the extreme-carboxylesterase genotypes is not the result of the cost of over-producing the enzyme. The frequency of insecticide-resistant genotypes is low in the population until insecticide is applied, indicating that they have reduced fitness, although this does not necessarily reflect a direct cost of expressing the resistance mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pyrimidine glycosides, vicine and convicine, limit the use of faba bean (Vicia faba L.) as food and feed. A single recessive gene, vc-, is responsible for a lowered vicine–convicine concentration. The biosynthetic pathway of these closely related compounds is not known, and the nearest available markers are several cM away from vc-. Improved markers would assist breeding and help to identify candidate genes. A segregating population of 210 F5 recombinant inbred lines was developed from the cross of Mélodie/2 (low vicine–convicine) × ILB 938/2 (normal vicine–convicine), and vicine–convicine concentrations were determined twice on each line. The population was genotyped with a set of 188 SNPs. A strong, single QTL for vicine–convicine concentration was identified on chromosome I, flanked by markers 1.0 cM away on one side and 2.6 cM on the other. The interval defined by these markers in the model species Medicago truncatula includes about 340 genes, but no candidate genes were identified. Further fine mapping should lead to the identification of tightly linked markers as well as narrowing down the search for candidate regulatory or biosynthetic genes which could underlie the vc- locus.