4 resultados para 363.61
em CentAUR: Central Archive University of Reading - UK
Resumo:
Xylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by alpha-(1,2)- and alpha-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown. Here we demonstrate that knocking-down glycosyltransferase (GT) 61 expression in wheat endosperm strongly decreases alpha-(1,3)-linked arabinosyl substitution of xylan. Moreover, heterologous expression of wheat and rice GT61s in Arabidopsis leads to arabinosylation of the xylan, and therefore provides gain-of-function evidence for alpha-(1,3)-arabinosyltransferase activity. Thus, GT61 proteins play a key role in arabinoxylan biosynthesis and therefore in the evolutionary divergence of grass cell walls.
Resumo:
Corticotropin-releasing factor (CRF) has been shown to have a central role in physiological adaptation to stress. It is recognized for stimulating the release of adrenocorticotropin from the anterior pituitary gland, and has more recently been implicated as a regulator of autonomic and immunological responses to stress. Much confusion has surrounded the characterization of CRF receptors, with proteins of varying molecular weights having been identified but never purified and characterized. Recently, two CRF receptors have been cloned from brain and pituitary gland, but evidence from in-situ hybridization studies suggests that further CRF receptor types exist. We therefore developed two techniques which enable the isolation of CRF receptors from whole rat brain. The use of a solid-phase CRF analogue affinity column and elution using a competing ligand resulted in the purification of a single protein of 61 kDa. A second technique was devised which allowed the co-isolation of associated signalling proteins and the identification of CRF bound species following purification. CRF was covalently cross-linked to receptors and the complex purified using antibodies specific for the ligand. This enabled the purification of a CRF receptor of approximately 65 kDa and associated alpha and beta gamma G protein subunits. This study demonstrates the successful isolation of CRF receptors which are of different molecular weights to those previously observed from affinity cross-linking studies or predicted from cloned genes. In addition, we confirm the involvement of G proteins in CRF stimulated cell signalling by demonstrating their association with purified CRF receptor.
Resumo:
Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (Octo- ber to May) ice area transport across the northern and east- ern Laptev Sea boundaries (NB and EB) of 3.48 × 10 5 km 2 . The average transport across the NB (2.87 × 10 5 km 2 ) is thereby higher than across the EB (0.61 × 10 5 km 2 ), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 10 5 km 2 decade − 1 , p> 0 . 95), dominated by increas- ing export through the EB (0.55 × 10 5 km 2 decade − 1 , p> 0 . 90), while the increase in export across the NB is smaller (0.3 × 10 5 km 2 decade − 1 ) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric in- dices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in con- centration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the cen- tral and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our re- sults imply that years of high ice export in late winter (Febru- ary to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.