7 resultados para 316420070519-moor
em CentAUR: Central Archive University of Reading - UK
Resumo:
Field inoculation trials and laboratory studies were used to investigate the effects of defoliation stress on potted black currant plants and the infection by English and African isolates of Armillaria. Defoliation has varying effects on the carbohydrate, fatty acids and amino acids contents of roots. All isolates of Armillaria tested infected black currant plants irrespective of stress treatment; with two of the test isolates, more of the infected plants were killed with defoliation treatment. Media supplemented with water extract from defoliated roots stimulated growth of isolates compared to media supplemented with extract from non-defoliated control root tissues. The differences observed in the pathogenic behaviour of isolates, may be of importance in the epidemiology of Armillaria infections.
Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils
Resumo:
A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42−) dynamics under drought conditions has been revealed from analysis of a 10-year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>−25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42−, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42− during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.
Resumo:
A series of imitation games involving 3-participant (simultaneous comparison of two hidden entities) and 2-participant (direct interrogation of a hidden entity) were conducted at Bletchley Park on the 100th anniversary of Alan Turing’s birth: 23 June 2012. From the ongoing analysis of over 150 games involving (expert and non-expert, males and females, adults and child) judges, machines and hidden humans (foils for the machines), we present six particular conversations that took place between human judges and a hidden entity that produced unexpected results. From this sample we focus on features of Turing’s machine intelligence test that the mathematician/code breaker did not consider in his examination for machine thinking: the subjective nature of attributing intelligence to another mind.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.