3 resultados para 316.343.63
em CentAUR: Central Archive University of Reading - UK
Resumo:
The particle size distributions of surface soils from two cultivated silty fields (Moorfield and Railway South) in Herefordshire, UK, were assessed by sampling on 20-m grids across the fields. Moorfield (8 ha) had a uniform landscape sloping mainly in a North-South direction while Railway South (12 ha) had complex undulating landscape characteristics. Samples from 3 surficial layers were also taken at 3 landscape positions at Moorfield to investigate recent (within-season) soil particle redistribution. Size fractions were determined using chemical dispersion, wet sieving (to separate the sand fractions) and laser gramilometry (for the finer fractions). The distribution of various fractions and the relationships between elevation and the various fractions suggest preferential detachment and movement of coarse to very coarse silt fractions (16-63 mu m), which were found mostly at downslope or depositional areas. Upper slope samples had higher clay to fine silt (< 16 mu m) contents than bottom slope samples. The upslope-downslope patterns of size fractions, particularly on uniformly sloping areas, of the 2 fields were similar and their deposited sediments were dominated by coarse silt fractions. Samples from 3 landscape positions at Moorfield became coarser from the less eroded summit, through the eroding side-slope to the bottom-slope depositional area. Within each of these landscape positions the top 0-2.5 cm layers were more enriched in coarse silt fractions than the bottom layers. The spatial patterns of soil particle size distributions in the 2 fields may be a result of sediment detachment and deposition caused by water erosion and tillage operations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The state of river water deterioration in the Agueda hydrographic basin, mostly in the western part, partly reflects the high rate of housing and industrial development in this area in recent years. The streams have acted as a sink for organic and inorganic loads from several origins: domestic and industrial sewage and agricultural waste. The contents of the heavy metals Cr, Cd, Ni, Cu, Pb, and Zn were studied by sequential chemical extraction of the principal geochemical phases of streambed sediments, in the <63 mum fraction, in order to assess their potential availability to the environment, investigating, the metal concentrations, assemblages, and trends. The granulometric and mineralogical characteristics of this sediment fraction were also studied. This study revealed clear pollution by Cr, Cd, Ni, Cu, Zn, and Pb, as a result from both natural and anthropogenic origins. The chemical transport of metals appears to be essentially by the following geochemical phases, in decreasing order of significance: (exchangeable + carbonates) much greater than (organics) much greater than (Mn and Fe oxides and hydroxides). The (exchangeable + carbonate) phase plays an important part in the fixation of Cu, Ni, Zn, and Cd. The organic phase is important in the fixation of Cr, Pb, and also Cu and Ni. Analyzing the metal contents in the residual fraction, we conclude that Zn and Cd are the most mobile, and Cr and Pb are less mobile than Cu and Ni. The proximity of the pollutant sources and the timing of the influx of contaminated material control the distribution of the contaminant-related sediments locally and on the network scale.
Resumo:
Along the lines of the nonlinear response theory developed by Ruelle, in a previous paper we have proved under rather general conditions that Kramers-Kronig dispersion relations and sum rules apply for a class of susceptibilities describing at any order of perturbation the response of Axiom A non equilibrium steady state systems to weak monochromatic forcings. We present here the first evidence of the validity of these integral relations for the linear and the second harmonic response for the perturbed Lorenz 63 system, by showing that numerical simulations agree up to high degree of accuracy with the theoretical predictions. Some new theoretical results, showing how to derive asymptotic behaviors and how to obtain recursively harmonic generation susceptibilities for general observables, are also presented. Our findings confirm the conceptual validity of the nonlinear response theory, suggest that the theory can be extended for more general non equilibrium steady state systems, and shed new light on the applicability of very general tools, based only upon the principle of causality, for diagnosing the behavior of perturbed chaotic systems and reconstructing their output signals, in situations where the fluctuation-dissipation relation is not of great help.