5 resultados para 28-268

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initial bacterial colonization, including colonization with health-positive bacteria, such as bifidobacteria and lactobacilli, is necessary for the normal development of intestinal innate and adaptive immune defenses. The predominance of beneficial bacteria in the gut microflora of breast-fed infants is thought to be, at least in part, supported by the metabolism of the complex mixture of oligosaccharides present in human breast milk, and a more adult-type intestinal microbiota is found in formula-fed infants. Inadequate gut colonization, dysbiosis, may lead to an increased risk of infectious, allergic, and autoimmune disorders later in life. The addition of appropriate amounts of selected prebiotics to infant formulas can enhance the growth of bifidobacteria or lactobacilli in the colonic microbiota and, thereby, might produce beneficial effects. Among the substrates considered as prebiotics are the oligosaccharides inulin, fructo-oligosaccharides, galacto-oligosaccharides, and lactulose. There are some reports that such prebiotics have beneficial effects on various markers of health. For example, primary prevention trials in infants have provided promising data on prevention of infections and atopic dermatitis. Additional well-designed prospective clinical trials and mechanistic studies are needed to advance knowledge further in this promising field. (J Pediatr 2009;155:S61-70).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium is not a physiological component of the breast but has been measured recently in human breast tissues and breast cyst fluids at levels above those found in blood serum or milk. Since the presence of aluminium can lead to iron dyshomeostasis, levels of aluminium and iron-binding proteins (ferritin, transferrin) were measured in nipple aspirate fluid (NAF), a fluid present in the breast duct tree and mirroring the breast microenvironment. NAFs were collected noninvasively from healthy women (NoCancer; n = 16) and breast cancer-affected women (Cancer; n = 19), and compared with levels in serum (n = 15) and milk (n = 45) from healthy subjects. The mean level of aluminium, measured by ICP-mass spectrometry, was significantly higher in Cancer NAF (268.4 ± 28.1 μg l−1; n = 19) than in NoCancer NAF (131.3 ± 9.6 μg l−1; n = 16; P < 0.0001). The mean level of ferritin, measured through immunoassay, was also found to be higher in Cancer NAF (280.0 ± 32.3 μg l−1) than in NoCancer NAF (55.5 ± 7.2 μg l−1), and furthermore, a positive correlation was found between levels of aluminium and ferritin in the Cancer NAF (correlation coefficient R = 0.94, P < 0.001). These results may suggest a role for raised levels of aluminium and modulation of proteins that regulate iron homeostasis as biomarkers for identification of women at higher risk of developing breast cancer. The reasons for the high levels of aluminium in NAF remain unknown but possibilities include either exposure to aluminium-based antiperspirant salts in the adjacent underarm area and/or preferential accumulation of aluminium by breast tissues.