2 resultados para 259903 Industrial Chemistry
em CentAUR: Central Archive University of Reading - UK
Resumo:
The atmospheric chemistry of several gases used in industrial applications, C4F9OC2H5 (HFE-7200), C4F9OCH3 (HFE-7100), C3F7OCH3 (HFE-7000) and C3F7CH2OH, has been studied. The discharge flow technique coupled with mass-spectrometric detection has been used to study the kinetics of their reactions with OH radicals as a function of temperature. The infrared spectra of the compounds have also been measured. The following Arrhenius expressions for the reactions were determined (in units of cm3 molecule-1 s-1): k(OH + HFE-7200) = (6.9+2.3-1.7) × 10-11 exp(-(2030 ± 190)/T); k(OH + HFE-7100) = (2.8+3.2-1.5) × 10-11 exp(-(2200 ± 490)/T); k(OH + HFE-7000) = (2.0+1.2-0.7) × 10-11 exp(-(2130 ± 290)/T); and k(OH + C3F7CH2OH) = (1.4+0.3-0.2) × 10-11 exp(-(1460 ± 120)/T). From the infrared spectra, radiative forcing efficiencies were determined and compared with earlier estimates in the literature. These were combined with the kinetic data to estimate 100-year time horizon global warming potentials relative to CO2 of 69, 337, 499 and 36 for HFE-7200, HFE-7100, HFE-7000 and CF3CF2CF2CH2OH, respectively.
Resumo:
The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6) are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are small. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.