18 resultados para 25-HYDROXYVITAMIN D LEVELS

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Circulating levels of 25-hydroxyvitamin D (25OHD) are positively associated with high density lipoprotein (HDL) cholesterol. We sought to replicate a previously reported interaction between APOA5 genotype and vitamin D, and to examine whether HDL-associated genetic loci modify the association between serum 25OHD and HDL cholesterol. METHODS: We examined whether 42 single nucleotide polymorphisms (SNPs) modify the association between serum 25OHD and HDL cholesterol in the 1958 British Birth cohort (aged 45 years, n = 4978). RESULTS: We identified a borderline interaction between the SNP rs12272004 (near the APOA5) and serum 25OHD on HDL cholesterol (P(interaction) = 0.05). The interaction was particularly prominent among the samples collected during winter (P(interaction) = 0.001). None of the other loci showed an interaction with serum 25OHD concentrations on HDL cholesterol. CONCLUSIONS: Our study in 4978 British Whites provides further support that APOA5 genotype modifies the association between vitamin D metabolites and HDL cholesterol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: 25-hydroxyvitamin D (25OHD) concentrations have been shown to be associated with major clinical outcomes, with a suggestion that individual risk may vary according to common genetic differences in the vitamin D receptor (VDR) gene. Hence, we tested for the interactions between two previously studied VDR polymorphisms and 25OHD on metabolic and cardiovascular disease-related outcomes in a large population-based study. METHODS: Interactions between two previously studied VDR polymorphisms (rs7968585 and rs2239179) and 25OHD concentrations on metabolic and cardiovascular disease-related outcomes such as obesity- (body mass index, waist circumference, waist-hip ratio (WHR)), cardiovascular- (systolic and diastolic blood pressure), lipid- (high- and low-density lipoprotein, triglycerides, total cholesterol), inflammatory- (C-reactive protein, fibrinogen, insulin growth factor-1, tissue plasminogen activator) and diabetes- (glycated haemoglobin) related markers were examined in the 1958 British Birth cohort (n up to 5160). Interactions between each SNP and 25OHD concentrations were assessed using linear regression and the likelihood ratio test. RESULTS: After Bonferroni correction, none of the interactions reached statistical significance except for the interaction between the VDR SNP rs2239179 and 25OHD concentrations on waist-hip ratio (WHR) (P=0.03). For every 1nmol/L higher 25OHD concentrations, the association with WHR was stronger among those with two major alleles (-4.0%, P=6.26e-24) compared to those with either one or no major alleles (-2.3%, P≤8.201e-07, for both) of the VDR SNP rs2239179. CONCLUSION: We found no evidence for VDR polymorphisms acting as major modifiers of the association between 25OHD concentrations and cardio-metabolic risk. Interaction between VDR SNP rs2239179 and 25OHD on WHR warrants further confirmation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate the relation between serum concentration of 25-hydroxyvitamin D [25(OH)D] and insulin action and secretion. RESEARCH DESIGN AND METHODS In a cross-sectional study of 446 Pan-European subjects with the metabolic syndrome, insulin action and secretion were assessed by homeostasis model assessment (HOMA) indexes and intravenous glucose tolerance test to calculate acute insulin response, insulin sensitivity, and disposition index. Serum 25(OH)D was measured by high-performance liquid chromatography/mass spectrometry. RESULTS The 25(OH)D3 concentration was 57.1 ± 26.0 nmol/l (mean ± SD), and only 20% of the subjects had 25(OH)D3 levels ≥75 nmol/l. In multiple linear analyses, 25(OH)D3 concentrations were not associated with parameters of insulin action or secretion after adjustment for BMI and other covariates. CONCLUSIONS In a large sample of subjects with the metabolic syndrome, serum concentrations of 25(OH)D3 did not predict insulin action or secretion. Clear evidence that D vitamin status directly influences insulin secretion or action is still lacking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rank Forum on Vitamin D was held on 2nd and 3rd July 2009 at the University of Surrey, Guildford, UK. The workshop consisted of a series of scene-setting presentations to address the current issues and challenges concerning vitamin D and health, and included an open discussion focusing on the identification of the concentrations of serum 25-hydroxyvitamin D (25(OH)D) (a marker of vitamin D status) that may be regarded as optimal, and the implications this process may have in the setting of future dietary reference values for vitamin D in the UK. The Forum was in agreement with the fact that it is desirable for all of the population to have a serum 25(OH)D concentration above 25 nmol/l, but it discussed some uncertainty about the strength of evidence for the need to aim for substantially higher concentrations (25(OH)D concentrations . 75 nmol/l). Any discussion of ‘optimal’ concentration of serum 25(OH)D needs to define ‘optimal’ with care since it is important to consider the normal distribution of requirements and the vitamin D needs for a wide range of outcomes. Current UK reference values concentrate on the requirements of particular subgroups of the population; this differs from the approaches used in other European countries where a wider range of age groups tend to be covered. With the re-emergence of rickets and the public health burden of low vitamin D status being already apparent, there is a need for urgent action from policy makers and risk managers. The Forum highlighted concerns regarding the failure of implementation of existing strategies in the UK for achieving current vitamin D recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Methods: Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n=4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Results: Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m 2 increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P =0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. Conclusions: In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient and robust method to measure vitamin D (25-hydroxy vitamin D3 (25(OH)D3) and 25-hydroxy vitamin D2 in dried blood spots (DBS) has been developed and applied in the pan-European multi-centre, internet-based, personalised nutrition intervention study Food4Me. The method includes calibration with blood containing endogenous 25(OH)D3, spotted as DBS and corrected for haematocrit content. The methodology was validated following international standards. The performance characteristics did not reach those of the current gold standard liquid chromatography-MS/MS in plasma for all parameters, but were found to be very suitable for status-level determination under field conditions. DBS sample quality was very high, and 3778 measurements of 25(OH)D3 were obtained from 1465 participants. The study centre and the season within the study centre were very good predictors of 25(OH)D3 levels (P<0·001 for each case). Seasonal effects were modelled by fitting a sine function with a minimum 25(OH)D3 level on 20 January and a maximum on 21 July. The seasonal amplitude varied from centre to centre. The largest difference between winter and summer levels was found in Germany and the smallest in Poland. The model was cross-validated to determine the consistency of the predictions and the performance of the DBS method. The Pearson's correlation between the measured values and the predicted values was r 0·65, and the sd of their differences was 21·2 nmol/l. This includes the analytical variation and the biological variation within subjects. Overall, DBS obtained by unsupervised sampling of the participants at home was a viable methodology for obtaining vitamin D status information in a large nutritional study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Indian Asians living in Western Countries have an over 50% increased risk of coronary heart disease (CHD) relative to their Caucasians counterparts. The atherogenic lipoprotein phenotype (ALP), which is more prevalent in this ethnic group, may in part explain the increased risk. A low dietary long chain n-3 fatty acid (LC n-3 PUFA) intake and a high dietary n-6 PUFA intake and n-6:n-3 PUFA ratio in Indian Asians have been proposed as contributors to the increased ALP incidence and CHD risk in this subgroup. Aim: To examine the impact of dietary n-6:n-3 PUFA ratio on membrane fatty acid composition, blood lipid levels and markers of insulin sensitivity in Indian Asians living in the UK. Methods: Twenty-nine males were assigned to either a moderate or high n-6:n-3 PUFA (9 or 16) diet for 6 weeks. Fasting blood samples were collected at baseline and 6 weeks for analysis of triglycerides, total-, LDL- and HDL- cholesterol, non-esterified fatty acids, glucose, insulin, markers of insulin sensitivity and C-reactive protein. Results: Group mean saturated fatty acid, MUFA, n-6 PUFA and n-3 PUFA on the moderate and high n-6:n-3 PUFA diets were 26 g/d, 43 g/d, 15 g/d, 2 g/d and 25 g/d, 25 g/d, 28 g/d, 2 g/d respectively. A significantly lower total membrane n-3 PUFA and a trend towards lower EPA and DHA levels were observed following the high n-6:n-3 PUFA diet. However no significant effect of treatment on plasma lipids was evident. There was a trend towards a loss of insulin sensitivity on the high n-6:n-3 PUFA diet, with the increase in fasting insulin (P = 0.04) and HOMA IR [(insulin x glucose)/22.5] (P = 0.02) reaching significance. Conclusion: The results of the current study suggest that, within the context of a western diet, it is unlikely that dietary n-6:n-3 PUFA ratio has any major impact on the levels of LC n-3 PUFA in membrane phospholipids or have any major clinically relevant impact on insulin sensitivity and its associated dyslipidaemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organisms generally respond to iron deficiency by increasing their capacity to take up iron and by consuming intracellular iron stores. Escherichia coli, in which iron metabolism is particularly well understood, contains at least 7 iron-acquisition systems encoded by 35 iron-repressed genes. This Fe-dependent repression is mediated by a transcriptional repressor, Fur ( ferric uptake regulation), which also controls genes involved in other processes such as iron storage, the Tricarboxylic Acid Cycle, pathogenicity, and redox-stress resistance. Our macroarray-based global analysis of iron- and Fur-dependent gene expression in E. coli has revealed several novel Fur-repressed genes likely to specify at least three additional iron- transport pathways. Interestingly, a large group of energy metabolism genes was found to be iron and Fur induced. Many of these genes encode iron- rich respiratory complexes. This iron- and Fur-dependent regulation appears to represent a novel iron-homeostatic mechanism whereby the synthesis of many iron- containing proteins is repressed under iron- restricted conditions. This mechanism thus accounts for the low iron contents of fur mutants and explains how E. coli can modulate its iron requirements. Analysis of Fe-55-labeled E. coli proteins revealed a marked decrease in iron- protein composition for the fur mutant, and visible and EPR spectroscopy showed major reductions in cytochrome b and d levels, and in iron- sulfur cluster contents for the chelator-treated wild-type and/or fur mutant, correlating well with the array and quantitative RT-PCR data. In combination, the results provide compelling evidence for the regulation of intracellular iron consumption by the Fe2+-Fur complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the energetics and zonal-mean state of the upward extension of the Canadian Middle Atmosphere Model, which extends from the ground to ~210 km. The model includes realistic parameterizations of the major physical processes from the ground up to the lower thermosphere and exhibits a broad spectrum of geophysical variability. The rationale for the extended model is to examine the nature of the physical and dynamical processes in the mesosphere/lower thermosphere (MLT) region without the artificial effects of an imposed sponge layer which can modify the circulation in an unrealistic manner. The zonal-mean distributions of temperature and zonal wind are found to be in reasonable agreement with observations in most parts of the model domain below ~150 km. Analysis of the global-average energy and momentum budgets reveals a balance between solar extreme ultraviolet heating and molecular diffusion and a thermally direct viscous meridional circulation above 130 km, with the viscosity coming from molecular diffusion and ion drag. Below 70 km, radiative equilibrium prevails in the global mean. In the MLT region between ~70 and 120 km, many processes contribute to the global energy budget. At solstice, there is a thermally indirect meridional circulation driven mainly by parameterized nonorographic gravity-wave drag. This circulation provides a net global cooling of up to 25 K d^-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bewildering complexity of cortical microcircuits at the single cell level gives rise to surprisingly robust emergent activity patterns at the level of laminar and columnar local field potentials (LFPs) in response to targeted local stimuli. Here we report the results of our multivariate data-analytic approach based on simultaneous multi-site recordings using micro-electrode-array chips for investigation of the microcircuitary of rat somatosensory (barrel) cortex. We find high repeatability of stimulus-induced responses, and typical spatial distributions of LFP responses to stimuli in supragranular, granular, and infragranular layers, where the last form a particularly distinct class. Population spikes appear to travel with about 33 cm/s from granular to infragranular layers. Responses within barrel related columns have different profiles than those in neighbouring columns to the left or interchangeably to the right. Variations between slices occur, but can be minimized by strictly obeying controlled experimental protocols. Cluster analysis on normalized recordings indicates specific spatial distributions of time series reflecting the location of sources and sinks independent of the stimulus layer. Although the precise correspondences between single cell activity and LFPs are still far from clear, a sophisticated neuroinformatics approach in combination with multi-site LFP recordings in the standardized slice preparation is suitable for comparing normal conditions to genetically or pharmacologically altered situations based on real cortical microcircuitry.