23 resultados para 2-STATE MARKOV-PROCESSES
em CentAUR: Central Archive University of Reading - UK
Resumo:
The purpose of this volume is to examine and evaluate the impact of international state-building interventions on the political economy of post-conflict countries over the last 20 years. It analyses how international interventions have shaped political and economic dynamics and structures – both formal and informal – and what kind of state, and what kind of state-society relations have been created as a result, through three different lenses: first, through the approaches taken by different international actors like the UN, the International Financial Institutions, or the European Union, to state-building; second, through detailed analysis of key state-building policies; and third, through a wide range of country case studies. Amongst the recurring themes that are highlighted by the book’s focus on the political economy of state-building, and that help to explain why international state-building interventions have tended to fall short of the visions of interveners and local populations alike are evidence of important continuities between war-time and “post-conflict” economies and authority structures, which are often consolidated as a consequence of international involvement; tensions arising from what are often the competing interests and values held by different interveners and local actors; and, finally, the continuing salience of economic and political violence in state-building processes and war-to-peace transitions. The book aims to offer a more nuanced understanding of the complex impact of state-building practices on post-conflict societies, and of the political economy of post-conflict state-building.
Resumo:
The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Resumo:
The a/b hybrid-type ν1 fundamental and 2ν2 overtone bands of HOF were investigated by FTIR spectroscopy with a resolution close to 0.008 cm−1. Improved ground state parameters of HOF were determined from a merge of more than 3000 ground state combination differences formed from ν1 and previously measured ν2 transitions with the reported pure rotational lines. Excited state parameters of the v2 = 2 state, ν0 = 2686.924 6(1) and χ22 = −9.942 4(1) cm−1, were determined employing Watson's A-reduced Hamiltonian up to sixth order in I′ representation. The 2ν2 state was found to be unperturbed, the excited state parameters being closely related to those of ν2.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
We consider an equilibrium birth and death type process for a particle system in infinite volume, the latter is described by the space of all locally finite point configurations on Rd. These Glauber type dynamics are Markov processes constructed for pre-given reversible measures. A representation for the ``carré du champ'' and ``second carré du champ'' for the associate infinitesimal generators L are calculated in infinite volume and for a large class of functions in a generalized sense. The corresponding coercivity identity is derived and explicit sufficient conditions for the appearance and bounds for the size of the spectral gap of L are given. These techniques are applied to Glauber dynamics associated to Gibbs measure and conditions are derived extending all previous known results and, in particular, potentials with negative parts can now be treated. The high temperature regime is extended essentially and potentials with non-trivial negative part can be included. Furthermore, a special class of potentials is defined for which the size of the spectral gap is as least as large as for the free system and, surprisingly, the spectral gap is independent of the activity. This type of potentials should not show any phase transition for a given temperature at any activity.
Resumo:
The energy of the vh9/2 orbital in nuclei above N = 82 drops rapidly in energy relative to the vf7/2 orbital as the occupancy of the πh11/2 orbital increases. These two neutron orbitals become nearly degenerate as the proton drip line is approached. In this work, we have discovered the new nuclides 161Os and 157W, and studied the decays of the proton emitter 160Re in detail. The 161Os and 160Re nuclei were produced in reactions of 290, 300 and 310 MeV 58Ni ions with an isotopically enriched 106Cd target, separated in‐flight using the RITU separator and implanted into the GREAT spectrometer. The 161Os α a decays populated the new nuclide 157W, which decayed by β‐particle emission. The β decay fed the known α‐decaying 1/2+ and 11/2− states in 157Ta, which is consistent with a vf7/2 ground state in 157W. The measured α‐decay energy and half‐life for 161Os correspond to a reduced α‐decay width that is compatible with s‐wave α‐particle emission, implying that its ground state is also a vf7/2 state. Over 7000 160Re nuclei were produced and the γ decays of a new isomeric state feeding the πd3/2 level in 160Re were discovered, but no evidence for the proton or a decay of the expected πh11/2 state could be found. The isomer decays offer a natural explanation for this non‐observation and provides a striking example of the influence of the near degeneracy of the vh9/2 and vf7/2 orbitals on the properties of nuclei in this region.
Resumo:
Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The African Easterly Jet-Easterly Wave (AEJ-AEW) system was explored in an idealised model. Prescribed zonally symmetric surface temperature and moisture profiles determine the AEJ which becomes established through meridional contrasts in dry and moist convection.As in previous studies, a realistic AEJ developed with only dry convection. Including moist processes, increased its development rate, but reduced its speed and meridional extent. AEWs grew through barotropic-baroclinic conversions. Negative meridional potential vorticity (PV) gradients arose in the zonally symmetric state through the intrusion of the low-PV Saharan boundary layer. Since moist processes strengthened this significantly through diabatically generated PV in the Intertropical Convergence Zone, moist AEWs were three times stronger. Larger barotropic conversions and faster AEJ development increased the moist wave growth-rate. Jet-level and northerly low-level amplitudes grew, but in the moist case the low-level amplitudes weakened as the AEW interacted with convection, consistent with their absence from observations during the peak monsoon. Striking dependencies between the AEJ, AEW and rainfall existed. Two time-scales governed their evolution, depending on the transfer coefficients: (1) the AEJ's replenishment rate influenced by heat fluxes, and (2) the wave growth-rate, by damping, and the slower jet development rate.Moist AEWs were characterized by intermittent growth/decay, with growth preceded by increased mean rainfall and later, weakening AEJs. These dependencies established an internal 8-10-day variability, consistent with intra-seasonal observations of 9-day rainy sequences. This internal variability offers an alternative explanation to the previously proposed external forcing and a new view of the moist AEW life cycle. Copyright © 2009 Royal Meteorological Society
Resumo:
Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.
Resumo:
Two Multifunctional photoactive complexes [Re(Cl)(CO)(3)-(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+) = N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy = 2,2'-bipyridine) were synthesized. characterized. and their redox and photonic properties were investigated by cyclic voltammetry: ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions: and time-resolved resonance Raman spectroscopy. The first reduction step of either complex Occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans -> cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3) -> MeDpe(+) (MLCT)-M-3 (MLCT = metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximate to 42 (73%) and approximate to 430ps (27%). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3) -> MeDpe(+) and Re(CO)(3) -> bpy (MLCT)-M-3 states, from which a MeDpe(+) localized intraligand 3 pi pi* excited state ((IL)-I-3) is populated with lifetimes of approximate to 0.6 and approximate to 10 ps, respectively. The 3IL state undergoes a approximate to 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle Structural variations. The complex [Re(MeDpe+)(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
The retention of peatland carbon (C) and the ability to continue to draw down and store C from the atmosphere is not only important for the UK terrestrial carbon inventory, but also for a range of ecosystem services, the landscape value and the ecology and hydrology of ~15% of the land area of the UK. Here we review the current state of knowledge on the C balance of UK peatlands using several studies which highlight not only the importance of making good flux measurements, but also the spatial and temporal variability of different flux terms that characterise a landscape affected by a range of natural and anthropogenic processes and threats. Our data emphasise the importance of measuring (or accurately estimating) all components of the peatland C budget. We highlight the role of the aquatic pathway and suggest that fluxes are higher than previously thought. We also compare the contemporary C balance of several UK peatlands with historical rates of C accumulation measured using peat cores, thus providing a long-term context for present-day measurements and their natural year-on-year variability. Contemporary measurements from 2 sites suggest that current accumulation rates (–56 to –72 g C m–2 yr–1) are at the lower end of those seen over the last 150 yr in peat cores (–35 to –209 g C m–2 yr–1). Finally, we highlight significant current gaps in knowledge and identify where levels of uncertainty are high, as well as emphasise the research challenges that need to be addressed if we are to improve the measurement and prediction of change in the peatland C balance over future decades.