10 resultados para 17beta(H),21beta(H)-homohopanol

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous work has demonstrated that the alkyl esters of p-hydroxybenzoic acid (parabens) possess oestrogenic activity, which increases with length of alkyl chain from methylparaben to n-butylparaben and with branching in the alkyl chain from n-butylparaben to isobutylparaben. This study reports on the oestrogenic activity of benzylparaben in a variety of assays in vitro and in vivo. Benzylparaben was able to displace [H-3]oestradiol from cytosolic oestrogen receptor (ER) of MCF7 human breast cancer cells by 22% at 1000-fold molar excess, by 40% at 10000-fold molar excess, by 57% at 100000-fold molar excess and by 100% at 1000000-fold molar excess. It was able to increase expression of a stably transfected oestrogen responsive reporter gene (ERE-CAT) in MCF7 cells after 24 h at 10(-5)M/10(-4)M and after 7 days at 10(-6)M/10(-5)M/10(-4)M. Proliferation of MCF7 cells could be increased by 10(-6)M/10(-5)M benzylparaben and this could be inhibited by 10(-7)M pure anti-oestrogen ICI 182,780, indicating that growth effects were ER mediated. Further evidence for ER-mediation was provided from the ability of benzylparaben to increase the growth of a second oestrogen-dependent human breast cancer cell line ZR-75-1, but not the oestrogen-insensitive NIDA-MB-231 cell line. When tested in the presence of 10(-10)M 17beta-oestradiol, benzylparaben gave no antagonist response on the growth of either MCF7 or ZR-75-1 cells. Finally, benzylparaben could increase uterine weight in the immature mouse following topical application of three daily doses of 33 mg to dorsal skin. These results demonstrate that the oestrogenicity of methylparaben can be increased by the addition of an aryl group as well as by lengthening or branching the alkyl grouping. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer is one of the most frequent cancer types in Western societies and predominately occurs in the elderly male. The strong age-related increase of prostate cancer is associated with a progressive accumulation of oxidative DNA damage which is presumably supported by a decline of the cellular antioxidative defence during ageing. Risk of developing prostate cancer is much lower in many Asian countries where soy food is an integral part of diet. Therefore, isoflavones from soy were suggested to have chemopreventive activities in prostate cells. Here, we have investigated the hypothesis that the soy-isoflavone genistein could protect DNA of LAPC-4 prostate cells from oxidative stress-related damage by enhancing the expression of antioxidative genes and proteins. A 24 h preincubation with genistein (1-30 microM) protected cells from hydrogen peroxide-induced DNA damage, as determined by the comet assay. Analysis of two cDNA macroarrays, each containing 96 genes of biotransformation and stress response, revealed a modulated expression of 3 genes at 1 microM and of 19 genes at 10 microM genistein. Real-time PCR confirmed the induction of three genes encoding products with antioxidant activities, namely glutathione reductase (2.7-fold), microsomal glutathione S-transferase 1 (1.9-fold) and metallothionein 1X (6.3-fold), at 1-30 microM genistein. 17Beta-estradiol, in contrast, decreased the expression of metallothionein 1X at 0.3 microM (2.0-fold), possibly pointing to an estrogen receptor-mediated regulation of this gene. Immunocytochemical staining revealed an induction of metallothionein proteins at 30 microM genistein, while their intracellular localization was unaffected. Metallothioneins were previously found to protect cells from hydrogen peroxide-induced DNA damage. Hence, our findings indicate that genistein protects prostate cells from oxidative stress-related DNA damage presumably by inducing the expression of antioxidative products, such as metallothioneins. Genistein, therefore, might counteract the age-related decline of important antioxidative defence systems which in turn maintain DNA integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite being generally perceived as detrimental to the cardiovascular system, testosterone has marked beneficial vascular effects; most notably it acutely and directly causes vasodilatation. Indeed, men with hypotestosteronaemia can present with myocardial ischemia and angina which can be rapidly alleviated by infusion of testosterone. To date, however, in vitro studies have failed to provide a convincing mechanism to account for this clinically important effect. Here, using whole-cell patch-clamp recordings to measure current flow through recombinant human L-type Ca2+ channel alpha(1C) subunits (Ca(v)1.2), we demonstrate that testosterone inhibits such currents in a concentration-dependent manner. Importantly, this occurs over the physiological range of testosterone concentrations (IC50 34 nM), and is not mimicked by the metabolite 5alpha-androstan-17beta-ol-3-one (DHT), nor by progesterone or estradiol, even at high (10 microM) concentration. L-type Ca2+ channels in the vasculature are also important clinical targets for vasodilatory dihydropyridines. A single point mutation (T1007Y) almost completely abolishes nifedipine sensitivity in our recombinant expression system. Crucially, the same mutation renders the channels insensitive to testosterone. Our data strongly suggest, for the first time, the molecular requirements for testosterone binding to L-type Ca2+ channels, thereby supporting its beneficial role as an endogenous Ca2+ channel antagonist in the treatment of cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2. The TRs have been shown to interfere with ER-mediated transcription from both the consensus estrogen response element (ERE) and the rat preproenkephalin (PPE) promoter, possibly by competing with ER binding to the ERE or by squelching coactivators essential for ER-mediated transcription. The rat oxytocin receptor (OTR) gene is thought to be involved in several facets of reproductive and affiliative behaviors. 17beta-Estradiol-bound ERs upregulate the OTR gene in the ventromedial hypothalamus, a region critical for the induction of lordosis behavior in several species. We investigated the effects of the ligand-binding TR isoforms on the ER-mediated transcription from a physiological promoter of a behaviorally relevant gene such as the OTR. Only ERalpha could induce the OTR gene in two cell lines tested, the CV-1 and the SK-N-BE2C neuroblastoma cell lines. ERbeta was incapable of inducing the gene in either cell line. ERalpha is therefore not equivalent to ERbeta on this physiological promoter. Indeed, in the neural cell line, ERbeta can inhibit ERalpha-mediated induction from the OTR promoter. While the TRalpha1 isoform inhibited ERalpha-mediated induction in the neural cell line, the TRbeta1 isoform stimulated induction, thus demonstrating isoform specificity in the interaction. The use of a DNA-binding mutant, the TR P box mutant, showed that inhibition of ERalpha-mediated induction of the rat OTR gene promoter by the TRalpha1 isoform does not require DNA-binding ability. SRC-1 overexpression relieved TRalpha1-mediated inhibition in both cell lines, suggesting that squelching for coactivators is an important molecular mechanism in TRalpha-mediated inhibition. Such interactions between TR and ER isoforms on the rat OTR promoter provide a mechanism to achieve neuroendocrine integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogen is a ligand for the estrogen receptor (ER), which on binding 17beta-estradiol, functions as a ligand-activated transcription factor and regulates the transcription of target genes. This is the slow genomic mode of action. However, rapid non-genomic actions of estrogen also exist at the cell membrane. Using a novel two-pulse paradigm in which the first pulse rapidly initiates non-genomic actions using a membrane-limited estrogen conjugate (E-BSA), while the second pulse promotes genomic transcription from a consensus estrogen response element (ERE), we have demonstrated that rapid actions of estrogen potentiate the slower transcriptional response from an ERE-reporter in neuroblastoma cells. Since rapid actions of estrogen activate kinases, we used selective inhibitors in the two-pulse paradigm to determine the intracellular signaling cascades important in such potentiation. Inhibition of protein kinase A (PKA), PKC, mitogen activated protein kinase (MAPK) or phosphatidylinositol 3-OH kinase (PI-3K) in the first pulse decreases potentiation of transcription. Also, our data with both dominant negative and constitutive mutants of Galpha subunits show that Galpha(q) initiates the rapid signaling cascade at the membrane in SK-N-BE(2)C neuroblastoma cells. We discuss two models of multiple kinase activation at the membrane Pulses of estrogen induce lordosis behavior in female rats. Infusion of E-BSA into the ventromedial hypothalamus followed by 17beta-estradiol in the second pulse could induce lordosis behavior, demonstrating the applicability of this paradigm in vivo. A model where non-genomic actions of estrogen couple to genomic actions unites both aspects of hormone action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogens have been demonstrated to rapidly modulate calcium levels in a variety of cell types. However, the significance of estrogen-mediated calcium flux in neuronal cells is largely unknown. The relative importance of intra- and extracellular sources of calcium in estrogenic effects on neurons is also not well understood. Previously, we have demonstrated that membrane-limited estrogens, such as E-BSA given before an administration of a 2-hour pulse of 17beta-estradiol (E(2)), can potentiate the transcription mediated by E(2) from a consensus estrogen response element (ERE)-driven reporter gene. Inhibitors to signal transduction cascades given along with E-BSA or E(2) demonstrated that calcium flux is important for E-BSA-mediated potentiation of transcription in a transiently transfected neuroblastoma cell line. In this report, we have used inhibitors to different voltage-gated calcium channels (VGCCs) and to intracellular store receptors along with E-BSA in the first pulse or with E(2) in the second pulse to investigate the relative importance of these channels to estrogen-mediated transcription. Neither L- nor P-type VGCCs seem to play a role in estrogen action in these cells; while N-type VGCCs are important in both the non-genomic and genomic modes of estrogen action. Specific inhibitors also showed that the ryanodine receptor and the inositol trisphosphate receptor are important to E-BSA-mediated transcriptional potentiation. This report provides evidence that while intracellular stores of calcium are required to couple non-genomic actions of estrogen initiated at the membrane to transcription in the nucleus, extracellular sources of calcium are also important in both non-genomic and genomic actions of estrogens. Copyright (c) 2005 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17beta estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Estrogens are important effectors of reproduction and are critical for upregulating female reproductive behavior or lordosis in females. In addition to the importance of transcriptional regulation of genes by 17beta-estradiol-bound estrogen receptors (ER), extranuclear signal transduction cascades such as protein kinase A (PKA) are also important in regulating female sexual receptivity. GPR30 (G-protein coupled receptor 30), also known as GPER1, a putative membrane ER (mER), is a G protein-coupled receptor that binds 17beta-estradiol with an affinity that is similar to that possessed by the classical nuclear ER and activates both PKA and extracellular-regulated kinase signaling pathways. The high expression of GPR30 in the ventromedial hypothalamus, a region important for lordosis behavior as well as kinase cascades activated by this receptor, led us to hypothesize that GPR30 may regulate lordosis behavior in female rodents. METHOD: In this study, we investigated the ability of G-1, a selective agonist of GPR30, to regulate lordosis in the female mouse by administering this agent prior to progesterone in an estradiol-progesterone priming paradigm prior to testing with stud males. RESULTS: As expected, 17beta-estradiol benzoate (EB), but not sesame oil, increased lordosis behavior in female mice. G-1 also increased lordosis behavior in female mice and decreased the number of rejective responses towards male mice, similar to the effect of EB. The selective GPR30 antagonist G-15 blocked these effects. CONCLUSION: This study demonstrates that activation of the mER GPR30 stimulates social behavior in a rodent model in a manner similar to EB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While many physiological effects of estrogens (E) are due to regulation of gene transcription by liganded estrogen receptors (ERs), several effects are also mediated, at least in part, by rapid non-genomic actions of E. Though the relative importance of rapid versus genomic effects in the central nervous system is controversial, we showed previously that membrane-limited effects of E, initiated by an estradiol bovine serum albumin conjugate (E2-BSA), could potentiate transcriptional effects of 17beta-estradiol from an estrogen response element (ERE)-reporter in neuroblastoma cells. Here, using specific inhibitors and activators in a pharmacological approach, we show that activation of phosphatidylinositol-3-phosphate kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways, dependent on a Galphaq coupled receptor signaling are important in this transcriptional potentiation. We further demonstrate, using ERalpha phospho-deficient mutants, that E2-BSA mediated phosphorylation of ERalpha is one mechanism to potentiate transcription from an ERE reporter construct. This study provides a possible mechanism by which signaling from the membrane is coupled to transcription in the nucleus, providing an integrated view of hormone signaling in the brain.