46 resultados para 13078-029
em CentAUR: Central Archive University of Reading - UK
Resumo:
We consider the approximation of some highly oscillatory weakly singular surface integrals, arising from boundary integral methods with smooth global basis functions for solving problems of high frequency acoustic scattering by three-dimensional convex obstacles, described globally in spherical coordinates. As the frequency of the incident wave increases, the performance of standard quadrature schemes deteriorates. Naive application of asymptotic schemes also fails due to the weak singularity. We propose here a new scheme based on a combination of an asymptotic approach and exact treatment of singularities in an appropriate coordinate system. For the case of a spherical scatterer we demonstrate via error analysis and numerical results that, provided the observation point is sufficiently far from the shadow boundary, a high level of accuracy can be achieved with a minimal computational cost.
Resumo:
The contribution of two blue-green algae species, Anabaeria flos-aquae and Microcystis aeruginosa, to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was investigated. The experiments examined the formation potential of these disinfection by-products (DBPs) from both algae cells and extracellular organic matter (EOM) during four algal growth phases. Algal cells and EOM of Anabaena and Microcystis exhibited a high potential for DBP formation. Yields of total THMs (TTHM) and total HAAs (THAA) were closely related to the growth phase. Reactivity of EOM from Anabaena was slightly higher than corresponding cells, while the opposite result was found for Microcystis. Specific DBP yields (yield/unit C) of Anabaena were in the range of 2-11 mu mol/mmol C for TTHM and 217 mu mol/mmol C for THAA, while those of Microcystis were slightly higher. With regard to the distributions of individual THM and HAA compounds, differences were observed between the algae species and also between cells and EOM. The presence of bromide shifted the dominant compounds from HAAs to THMs. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The importance of earthworms to ecosystem functioning has led to many studies on the impacts of metals on earthworms. Far less attention has been paid to the impact that earthworms have on soil metals both in terms of metal mobility and availability. In this review we consider which earthworms have been used in such studies, which soil components have been investigated, which types of soil have been used and what measures of mobility and availability applied. We proceed to review proposed reasons for effects: changes in microbial populations, pH, dissolved organic carbon and metal speciation. The balance of evidence suggests that earthworms increase metal mobility and availability but more studies are required to determine the precise mechanism for this. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Mineral and geochemical investigations were carried out on soil samples and fresh rock (trachytes) from two selected soil profiles (TM profile on leptic aluandic soils and TL profile on thapto aluandic-ferralsols) from Mount Bambouto to better understand geochemical processes and mineral paragenesis involved in the development of soils in this environment. In TM profile, the hydrated halloysites and goethite occur in the weathered saprolite boulders of BC horizon while dehydrated halloysite, gibbsite and goethite dominate the soils matrices of BC and A horizons. In TL profile, the dehydrated halloysites and goethite are the most abundant secondary minerals in the weathered saprolites of C and BC horizons while gibbsite, hematite and kaolinite occur in the soil matrices of BC, B and A horizons. The highest gibbsite content is in the platy nodules of B horizon. In both soil profiles, organo-metal complexes (most likely of AI and Fe) are present in the surface A horizon. Geochemically, between the fresh rock and the weathered saprolites in both soils, SiO2, K2O, CaO, Na2O and MgO contents decrease strongly while Fe2O3 and Al2O3 tend to accumulate. The molar ratio of SiO2/Al2O3 (Ki) and the sum of Ca, Mg, K and Na ions (TRB) also decreases abruptly between fresh rocks and the weathered saprolites, but increases significantly at the soil surface. The TM profile shows intense Al enrichment whereas the TL profile highlights enrichment in both AI and Fe as the weathering progresses upwards. Both soil profiles are enriched in Ni, Cu, Ba and Co and depleted in U, Th, Ta, Hf, Y, Sr, Pb, Zr and Zn relative to fresh rock. They also show a relatively low fractionation of the rare earth elements (REE: La, Nd, Sm, Eu, Tb, Yb and Lu), except for Ce which tends to be enriched in soils compared to CI chondrite. All these results give evidence of intense hydrolysis at soil deep in Mount Bambouto resulting in the formation of halloysite which progressively transforms into gibbsite and/or dehydrated halloysite. At the soil surface, the prominent pedogenetic process refers to andosolization with formation of organo-metal complexes. In TL profile, the presence of kaolinite in soil matrices BC and B horizons is consistent with ferralitization at soil deep. In conclusion, soil forming processes in Mount Bambouto are strongly influenced by local climate: (i) in the upper mountain (>2000 m), the fresh, misty and humid climate favors andosolization; whereas (ii) in the middle lands (1700-2000 m) with a relatively dry climate, both andosolization at the soil surface and ferralitization at soil deep act together. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Organic farming has often been found to provide benefits for biodiversity, but the benefits can depend on the species considered and characteristics of the surrounding landscape. In an intensively farmed area of Northeast Italy we investigated whether isolated organic farms, in a conventionally farmed landscape, provided local benefits for insect pollinators and pollination services. We quantified the relative effects of local management (i.e. the farm system), landscape management (proportion of surrounding uncultivated land) and interactions between them. We compared six organic and six conventional vine fields. The proportion of surrounding uncultivated land was calculated for each site at radii of 200, 500, 1000 and 2000 m. The organic fields did not differ from the conventional in their floral resources or proportion of surrounding uncultivated land. Data were collected on pollinator abundance and species richness, visitation rates to, and pollination of experimental potted plants. None of these factors were significantly affected by the farming system. The abundance of visits to the potted plants in the conventional fields tended to be negatively affected by the proportion of surrounding uncultivated land. The proportion fruit set, weight of seeds per plant and seed weight in conventional and organic fields were all negatively affected by the proportion of surrounding uncultivated land. In vine fields the impact of the surrounding landscape was stronger than the local management. Enhancement of biodiversity through organic farming should not be assumed to be ubiquitous, as potential benefits may be offset by the crop type, organicmanagement practices and the specific habitat requirements in the surrounding landscape.
Resumo:
Subcellular fractionation techniques were used to describe temporal changes (at intervals from T0 to T70 days) in the Pb, Zn and P partitioning profiles of Lumbricus rubellus populations from one calcareous (MDH) and one acidic (MCS) geographically isolated Pb/Zn-mine sites and one reference site (CPF). MDH and MCS individuals were laboratory maintained on their native field soils; CPF worms were exposed to both MDH and MCS soils. Site-specific differences in metal partitioning were found: notably, the putatively metal-adapted populations, MDH and MCS, preferentially partitioned higher proportions of their accumulated tissue metal burdens into insoluble CaPO4-rich organelles compared with naive counterparts, CPF. Thus, it is plausible that efficient metal immobilization is a phenotypic trait characterising metal tolerant ecotypes. Mitochondrial cytochrome oxidase II (COII) genotyping revealed that the populations indigenous to mine and reference soils belong to distinct genetic lineages, differentiated by 13%, with 7 haplotypes within the reference site lineage but fewer (3 and 4, respectively) in the lineage common to the two mine sites. Collectively, these observations raise the possibility that site-related genotype differences could influence the toxico-availability of metals and, thus, represent a potential confounding variable in field-based eco-toxicological assessments.
Resumo:
Twenty-eight field experiments on sandy-loam soils in the UK (1982-2003) are reviewed by relating the extension of the green area duration of the flag leaf (GLADF) by fungicides to effects on yield and quality of winter wheat. Over all experiments mean grain yield = 8.85t ha(-1) at 85% DM. With regards quality, mean values were: thousand grain weight (TGW) = 44.5 g; specific weight (SWT) = 76.9 kg hl(-1); crude protein concentration (CP (N x 5.7)) = 12.5 % DM; Hagberg falling number (HFN) = 285 s; and sodium dodecyl sulphate (SDS)-sedimentation volume = 69ml. For each day (d) that fungicides increased GLADF there were associated average increases in yield (0.144 1 ha(-1) d(-1), se 0.0049, df = 333), TGW (0.56 gd(-1), se = 0.017) and SWT (0.22 kg hl(-1) d(-1), se 0.011). Some curvature was evident in all these relationships. When GLADF was delayed beyond 700 degrees Cd after anthesis, as was possible in cool wet seasons, responses were curtailed, or less reliable. Despite this apparent terminal sink limitation, fungicide effects on sink size, eg endosperm cell numbers or maximum water mass per grain, were not prerequisites for large effects on grain yield, TGW or SWT. Fungicide effects on CP were variable. Although the average response of CP was negative (-0.029%DM/d; se = 0.00338), this depended on cultivar and disease controlled. Controlling biotrophs such as rusts, (Puccinia spp.) tended to increase CP, whereas controlling a more necrotrophic pathogen (Septoria tritici) usually reducedCP. Irrespective of pathogen controlled, delaying senescence of the flag leaf was associated with increased nitrogen yields in the grain (averaging 2.24 kg N ha-1 d(-1), se = 0.0848) due to both increased N uptake into the above ground crop, and also more efficient remobilisation of N from leaf laminas. When sulphur availability appeared to be adequate, fungicide x cultivar interactions were similar on S as for CP, although N:S ratios tended to decline (i.e. improve for bread making) when S. tritici was controlled. On average, SDS-sedimentation volume declined (-0. 18 ml/d, se = 0.027) with increased GLADF, broadly commensurate with the average effect on CP. Hagberg falling number decreased as fungicide increased GLADF (-2.73 s/d, se = 0.178), indicating an increase in alpha-amylase activity.
Resumo:
Temperate-zone crops require a period of winter chilling to terminate dormancy and ensure adequate bud break the following spring. The exact chilling requirement of blackcurrant (Ribes nigrum), a commercially important crop in northern Europe, is relatively unknown. Chill unit models have been successfully utilized to determine the optimum chilling temperature of a range of crops, with one chill unit equating to I h exposure to the optimum temperature for chill satisfaction. Two-year-old R. nigrum plants of the cultivars 'Ben Gairn', 'Ben Hope' and 'Ben Tirran' were exposed to temperatures of -10.1 degrees C. -3.4 degrees C. 0.1 degrees C, 1.5 degrees C, 2.1 degrees C, 3.4 degrees C or 8.9 degrees C (+/- 0.7 degrees C) for durations of 0, 2, 4, 6, 8 or 10 weeks and multiple regression analyses used to determine the optimum temperature for chill satisfaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat silage, wheat, glucose) were milled to pass a I mm screen and sent to three laboratories (ADAS Nutritional Sciences Research Unit, UK; Institute of Grassland and Environmental Research (IGER), UK; Wageningen University, The Netherlands). Each laboratory measured GPP over 144 h using standardised procedures with manual pressure transducers (MPT) and automated pressure systems (APS). The APS at ADAS used a pressure transducer and bottles in a shaking water bath, while the APS at Wageningen and IGER used a pressure sensor and bottles held in a stationary rack. Apparent dry matter degradability (ADDM) was estimated at the end of the incubation. GPP were fitted to a modified Michaelis-Menten model assuming a single phase of gas production, and GPP were described in terms of the asymptotic volume of gas produced (A), the time to half A (B), the time of maximum gas production rate (t(RM) (gas)) and maximum gas production rate (R-M (gas)). There were effects (P<0.001) of substrate on all parameters. However, MPT produced more (P<0.001) gas, but with longer (P<0.001) B and t(RM gas) (P<0.05) and lower (P<0.001) R-M gas compared to APS. There was no difference between apparatus in ADDM estimates. Interactions occurred between substrate and apparatus, substrate and laboratory, and laboratory and apparatus. However, when mean values for MPT were regressed from the individual laboratories, relationships were good (i.e., adjusted R-2 = 0.827 or higher). Good relationships were also observed with APS, although they were weaker than for MPT (i.e., adjusted R-2 = 0.723 or higher). The relationships between mean MPT and mean APS data were also good (i.e., adjusted R 2 = 0. 844 or higher). Data suggest that, although laboratory and method of measuring pressure are sources of variation in GPP estimation, it should be possible using appropriate mathematical models to standardise data among laboratories so that data from one laboratory could be extrapolated to others. This would allow development of a database of GPP data from many diverse feeds. (c) 2005 Published by Elsevier B.V.
Resumo:
This study investigates the function of non-cropped field margins in arable farming systems for enhancing the biodiversity value of beetle communities. Three different sown seed mixtures were used to establish field margins, a Countryside Stewardship mix, a fine grass and forbs mix and a tussock grass and forbs mix. The structure of beetle communities in the first full year of establishment was found to show no difference between the tussock grass and Countryside Stewardship margins. However, both differed from the fine grass margins, which supported lower overall abundance and species richness of beetles. This was attributed to small-scale architectural differences between species of fine and tussock grasses, rather than differences in plant composition. Body size distributions of beetles showed distinct similarities between the Countryside Stewardship and tussock margins. A greater abundance of large beetles was found in fine grass margins, although in all cases these body size distributions were attributed to a small number of species or a taxonomically distinct group. All three margin types included beetle species of conservation value. The importance of these results was discussed in the context of the value of these seed mixtures for invertebrate conversation. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We argue that population modeling can add value to ecological risk assessment by reducing uncertainty when extrapolating from ecotoxicological observations to relevant ecological effects. We review other methods of extrapolation, ranging from application factors to species sensitivity distributions to suborganismal (biomarker and "-omics'') responses to quantitative structure activity relationships and model ecosystems, drawing attention to the limitations of each. We suggest a simple classification of population models and critically examine each model in an extrapolation context. We conclude that population models have the potential for adding value to ecological risk assessment by incorporating better understanding of the links between individual responses and population size and structure and by incorporating greater levels of ecological complexity. A number of issues, however, need to be addressed before such models are likely to become more widely used. In a science context, these involve challenges in parameterization, questions about appropriate levels of complexity, issues concerning how specific or general the models need to be, and the extent to which interactions through competition and trophic relationships can be easily incorporated.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
C14H10CuN4OS, monoclinic, P12(1)/nl (no. 14), a = 8.837(1) angstrom, b = 15.625(2) angstrom, c = 10.366(1) angstrom, beta = 103.36(1)degrees, V = 1392.6 angstrom(3), Z = 4, R-gt(F) = 0.029, WRref(F-2) = 0.076, T = 150 K.
Resumo:
A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.