19 resultados para 1214
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper we consider the estimation of population size from onesource capture–recapture data, that is, a list in which individuals can potentially be found repeatedly and where the question is how many individuals are missed by the list. As a typical example, we provide data from a drug user study in Bangkok from 2001 where the list consists of drug users who repeatedly contact treatment institutions. Drug users with 1, 2, 3, . . . contacts occur, but drug users with zero contacts are not present, requiring the size of this group to be estimated. Statistically, these data can be considered as stemming from a zero-truncated count distribution.We revisit an estimator for the population size suggested by Zelterman that is known to be robust under potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a locally truncated Poisson likelihood which is equivalent to a binomial likelihood. This result allows the extension of the Zelterman estimator by means of logistic regression to include observed heterogeneity in the form of covariates. We also review an estimator proposed by Chao and explain why we are not able to obtain similar results for this estimator. The Zelterman estimator is applied in two case studies, the first a drug user study from Bangkok, the second an illegal immigrant study in the Netherlands. Our results suggest the new estimator should be used, in particular, if substantial unobserved heterogeneity is present.
Resumo:
Field experiments were conducted in field bean in the north-eastern part of the Republic of Croatia to compare weed control and crop response under different management practices within the critical period of field bean production. The practices consisted in broadcast application of labelled rate of preemergence herbicide (PRE) and postemergence herbicide application: (POST) broadcast, band application over the rows, and band application combined with mechanical cultivation using of different herbicide doses recommended by the manufacturer (2x, 1x, 1/2x, 1/4x, 1/8x). In 1999, weed control with PRE application of pendimethalin was superior to POST bentazone application due to late emergence of weeds and lack of residual herbicide control. In 2000 bentazone combined with cycloxydim controlled weeds in field bean better than PRE herbicide application. Based on the results of this research, single PRE or POST application of herbicide did not control a broad spectrum of weeds and did not provide the commercially acceptable full season control. Reduced rates of herbicide are not advisable tinder high weed pressure.
Resumo:
Advanced prostate cancer is not curable by current treatment strategies indicating a significant need for new chemotherapeutic options. Highly substituted ansatitanocene compounds have shown promising cytotoxic activity in a range of cancers. The objectives of this study are to examine the effects of these titanocene compounds on prostate cancer cells. Prostate cell lines were treated with three novel titanocene compounds and compared to titanocene dichloride and cisplatin. Percent apoptosis, viability and cell cycle were assessed using propidium iodide DNA incorporation with flow cytometry. Cytochrome C was assessed by western blotting of mitochondrial and cytoplasmic fractions. Apoptosis Inducing Factor was assessed by confocal microscopy. These novel compounds induced more apoptosis compared to cisplatin in a dose dependent manner. Compound Y had the most significant effect on cell cycle and apoptosis. Despite the release of cytochrome C from the mitochondrial fraction there was no inhibition of apoptosis with the pan caspase inhibitor, ZVAD-FMK. AIF was shown to translocate from the cytosol to the nucleus mediating a caspase independent cell death. Bcl-2 over expressing PC-3 cells, which were resistant to cisplatin induced apoptosis, underwent apoptosis following treatment with all the titanocene compounds. This study demonstrates possible mechanisms by which these novel titanocene compounds can mediate their apoptotic effect in vitro. The fact that they can induce more apoptosis than cisplatin in advanced cancer cell lines would confer an advantage over cisplatin. They represent exciting new agents with future potential for the treatment of advanced prostate cancer.
Resumo:
We give necessary and sufficient conditions for a pair of (generali- zed) functions 1(r1) and 2(r1, r2), ri 2X, to be the density and pair correlations of some point process in a topological space X, for ex- ample, Rd, Zd or a subset of these. This is an infinite-dimensional version of the classical “truncated moment” problem. Standard tech- niques apply in the case in which there can be only a bounded num- ber of points in any compact subset of X. Without this restriction we obtain, for compact X, strengthened conditions which are necessary and sufficient for the existence of a process satisfying a further re- quirement—the existence of a finite third order moment. We general- ize the latter conditions in two distinct ways when X is not compact.
Resumo:
This paper extends and clarifies results of Steinsaltz and Evans [Trans. Amer. Math. Soc. 359 (2007) 1285–1234], which found conditions for convergence of a killed one-dimensional diffusion conditioned on survival, to a quasistationary distribution whose density is given by the principal eigenfunction of the generator. Under the assumption that the limit of the killing at infinity differs from the principal eigenvalue we prove that convergence to quasistationarity occurs if and only if the principal eigenfunction is integrable. When the killing at ∞ is larger than the principal eigenvalue, then the eigenfunction is always integrable. When the killing at ∞ is smaller, the eigenfunction is integrable only when the unkilled process is recurrent; otherwise, the process conditioned on survival converges to 0 density on any bounded interval.
Resumo:
In this paper we consider the Brownian motion with jump boundary and present a new proof of a recent result of Li, Leung and Rakesh concerning the exact convergence rate in the one-dimensional case. Our methods are dierent and mainly probabilistic relying on coupling methods adapted to the special situation under investigation. Moreover we answer a question raised by Ben-Ari and Pinsky concerning the dependence of the spectral gap from the jump distribution in a multi-dimensional setting.
Resumo:
For subordinators with positive drift we extend recent results on the structure of the potential measures and the renewal densities. Applying Fourier analysis a new representation of the potential densities is derived from which we deduce asymptotic results and show how the atoms of the Lévy measure translate into points of (non)differentiability of the potential densities.
Resumo:
If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0
Resumo:
Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.
Resumo:
Pardo, Patie, and Savov derived, under mild conditions, a Wiener-Hopf type factorization for the exponential functional of proper Lévy processes. In this paper, we extend this factorization by relaxing a finite moment assumption as well as by considering the exponential functional for killed Lévy processes. As a by-product, we derive some interesting fine distributional properties enjoyed by a large class of this random variable, such as the absolute continuity of its distribution and the smoothness, boundedness or complete monotonicity of its density. This type of results is then used to derive similar properties for the law of maxima and first passage time of some stable Lévy processes. Thus, for example, we show that for any stable process with $\rho\in(0,\frac{1}{\alpha}-1]$, where $\rho\in[0,1]$ is the positivity parameter and $\alpha$ is the stable index, then the first passage time has a bounded and non-increasing density on $\mathbb{R}_+$. We also generate many instances of integral or power series representations for the law of the exponential functional of Lévy processes with one or two-sided jumps. The proof of our main results requires different devices from the one developed by Pardo, Patie, Savov. It relies in particular on a generalization of a transform recently introduced by Chazal et al together with some extensions to killed Lévy process of Wiener-Hopf techniques. The factorizations developed here also allow for further applications which we only indicate here also allow for further applications which we only indicate here.
Resumo:
Let $R_{t}=\sup_{0\leq s\leq t}X_{s}-X_{t}$ be a Levy process reflected in its maximum. We give necessary and sufficient conditions for finiteness of passage times above power law boundaries at infinity. Information as to when the expected passage time for $R_{t}$ is finite, is given. We also discuss the almost sure finiteness of $\limsup_{t\to 0}R_{t}/t^{\kappa}$, for each $\kappa\geq 0$.
Resumo:
We consider an equilibrium birth and death type process for a particle system in infinite volume, the latter is described by the space of all locally finite point configurations on Rd. These Glauber type dynamics are Markov processes constructed for pre-given reversible measures. A representation for the ``carré du champ'' and ``second carré du champ'' for the associate infinitesimal generators L are calculated in infinite volume and for a large class of functions in a generalized sense. The corresponding coercivity identity is derived and explicit sufficient conditions for the appearance and bounds for the size of the spectral gap of L are given. These techniques are applied to Glauber dynamics associated to Gibbs measure and conditions are derived extending all previous known results and, in particular, potentials with negative parts can now be treated. The high temperature regime is extended essentially and potentials with non-trivial negative part can be included. Furthermore, a special class of potentials is defined for which the size of the spectral gap is as least as large as for the free system and, surprisingly, the spectral gap is independent of the activity. This type of potentials should not show any phase transition for a given temperature at any activity.
Resumo:
Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.