59 resultados para 120502 History and Theory of the Built Environment (excl. Architecture)
em CentAUR: Central Archive University of Reading - UK
Resumo:
This introductory chapter sets the scene for the book, providing an overview of sustainability in the built environment. With a bias towards buildings and the urban environment, it illustrates the range of issues that impinge upon global carbon reduction and the mechanisms available to help bring about change. Climate change, and its impact on built environment, is briefly introduced and sustainability in the built environment and associated factors are described. The specific topics relating to sustainable design and management of the built environment, including policy and assessment, planning, energy, water and waste, technology, supply and demand, occupants’ behaviour and management have been highlighted. This chapter emphasises the importance of a systemic approach in delivering a sustainable built environment.
Resumo:
The built environment in which health and social care is delivered can have an impact on the efficiency and outcomes of care processes. The health-care estate is large and growing and is expensive to build, adapt and maintain. The design of these buildings is a complex, difficult and political process. Better use of care pathways as an input to the design and use of the built environment has the potential to deliver significant benefits. A number of variations on the idea of care pathways are already used in designing health-care buildings but this is under-researched. This paper provides a framework for thinking about care pathways and the health-care built environment. The framework distinguishes between five different pathway ‘types’ defined for the purpose of understanding the relationship between pathways and infrastructure. The five types are: ‘care pathways’, ‘integrated care pathways’, ‘patient pathways’, ‘patient journeys’ and ‘patient flows’. The built environment implications of each type are discussed and recommendations made for those involved in either building development or care pathway projects.
Resumo:
The built environment in which health and social care is delivered can have an impact on the efficiency and outcomes of care processes. The health-care estate is large and growing and is expensive to build, adapt and maintain. The design of these buildings is a complex, difficult and political process. Better use of care pathways as an input to the design and use of the built environment has the potential to deliver significant benefits. A number of variations on the idea of care pathways are already used in designing health-care buildings but this is under-researched. This paper provides a framework for thinking about care pathways and the health-care built environment. The framework distinguishes between five different pathway ‘types’ defined for the purpose of understanding the relationship between pathways and infrastructure. The five types are: ‘care pathways’, ‘integrated care pathways’, ‘patient pathways’, ‘patient journeys’ and ‘patient flows’. The built environment implications of each type are discussed and recommendations made for those involved in either building development or care pathway projects.
Resumo:
The problems encountered by individuals with disabilities when accessing large public buildings is described and a solution based on the generation of virtual models of the built environment is proposed. These models are superimposed on a control network infrastructure, currently utilised in intelligent building applications such as lighting, heating and access control. The use of control network architectures facilitates the creation of distributed models that closely mirror both the physical and control properties of the environment. The model of the environment is kept local to the installation which allows the virtual representation of a large building to be decomposed into an interconnecting series of smaller models. This paper describes two methods of interacting with the virtual model, firstly a two dimensional aural representation that can be used as the basis of a portable navigational device. Secondly an augmented reality called DAMOCLES that overlays additional information on a user’s normal field of view. The provision of virtual environments offers new possibilities in the man-machine interface so that intuitive access to network based services and control functions can be given to a user.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
This paper presents the findings from a study into the current exploitation of computer-supported collaborative working (CSCW) in design for the built environment in the UK. The research is based on responses to a web-based questionnaire. Members of various professions, including civil engineers, architects, building services engineers, and quantity surveyors, were invited to complete the questionnaire. The responses reveal important trends in the breadth and size of project teams at the same time as new pressures are emerging regarding team integration and efficiency. The findings suggest that while CSCW systems may improve project management (e.g., via project documentation) and the exchange of information between team members, it has yet to significantly support those activities that characterize integrated collaborative working between disparate specialists. The authors conclude by combining the findings with a wider discussion of the application of CSCW to design activity-appealing for CSCW to go beyond multidisciplinary working to achieve interdisciplinary working.
Resumo:
This paper is an engineer's appreciation of environmental assessment with particular reference to highway development. While scheme-related Environmental Assessment for individual development may identify particular potential impacts, and may avoid or minimise some of the problems, in many cases it may be too late to take such actions. Ideally, Environmental Assessment should commence at the Strategic Level to cover policies, plan and programmes, and the scheme-related Environmental Assessments for individual projects should supplement those in the framework of Strategic Level. The utimate target is to assess the policy for their contribution to effecting sustainable development. Whole Life Environmental Impacts should be considered. These are the full impact consideration from planning, design and choice of materials, construction, operation and finally decommission. Most of the Environmental Assessments have not included the Whole Life Environmental Impacts. There is only limited monitoring in the operation stage after the construction of the scheme is complete, therefore, subsequent Environmental Assessments cannot benefit from the feedback of the scheme. No development should cost the Earth, hence Environmental Assessments have to be carried out thoroughly to serve as one of the instruments to meet the need of sustainable development.
Resumo:
This paper introduces an international collaboration of EU and Asia in education, training and research in the field of sustainable built environment, which attempts to develop a network of practical and intellectual knowledge and training exchange between Chinese and European Universities in the field of sustainable building design and construction. The projects funded by the European Commission Asia Link program, UK Foreign & Commonwealth Office, British Council and the UK Engineering Physical Sciences Council (EPSRC) have been introduced. The projects have significant impacts on promoting sustainable development in built environment in China. The aim of this paper is to share the experiences with those who are interested and searching the ways to collaborate with China in education and research.
Resumo:
The role of the academic in the built environment seems generally to be not well understood or articulated. While this problem is not unique to our field, there are plenty of examples in a wide range of academic disciplines where the academic role has been fully articulated. But built environment academics have tended not to look beyond their own literature and their own vocational context in trying to give meaning to their academic work. The purpose of this keynote presentation is to explore the context of academic work generally and the connections between education, research and practice in the built environment, specifically. By drawing on ideas from the sociology of the professions, the role of universities, and the fundamentals of social science research, a case is made that helps to explain the kind of problems that routinely obstruct academic progress in our field. This discussion reveals that while there are likely to be great weaknesses in much of what is published and taught in the built environment, it is not too great a stretch to provide a more robust understanding and a good basis for developing our field in a way that would enable us collectively to make a major contribution to theory-building, theory-testing and to make a good stab at tackling some of the problems facing society at large. There is no reason to disregard the fundamental academic disciplines that underpin our knowledge of the built environment. If we contextualise our work in these more fundamental disciplines, there is every reason to think that we can have a much greater impact that we have experienced to date.
Obesity and diabetes, the built environment, and the ‘local’ food economy in the United States, 2007
Resumo:
Obesity and diabetes are increasingly attributed to environmental factors, however, little attention has been paid to the influence of the ‘local’ food economy. This paper examines the association of measures relating to the built environment and ‘local’ agriculture with U.S. county-level prevalence of obesity and diabetes. Key indicators of the ‘local’ food economy include the density of farmers’ markets and the presence of farms with direct sales. This paper employs a robust regression estimator to account for non-normality of the data and to accommodate outliers. Overall, the built environment is associated with the prevalence of obesity and diabetes and a strong local’ food economy may play an important role in prevention. Results imply considerable scope for community-level interventions.
Resumo:
The majority of the world’s population now live in cities. This poses great challenges, but also great opportunities in terms of tackling climate change, resource depletion and environmental degradation. Policy agendas have increasingly focused on how to develop and maintain ‘integrated sustainable urban development’, and a number of theoretical conceptualisations of urban transition have been formulated to help our thinking and understanding in both developed and developing countries. Drawing on examples around the world the paper aims to examine the key ‘critical success factors’ that need to be in place for cities to traverse a pathway to a more sustainable future in urban development terms by 2050. The paper explores how important the issues of ‘scale’ is in the context of complexity and fragmentation in the city’s built environment, identifies the lessons that can be learned for future sustainable urban development, and the further research which is needed to address future urban transitions to 2050.
Resumo:
Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.