2 resultados para 12-115
em CentAUR: Central Archive University of Reading - UK
Resumo:
We perform a numerical study of the evolution of a Coronal Mass Ejection (CME) and its interaction with the coronal magnetic field based on the 12 May 1997, CME event using a global MagnetoHydroDynamic (MHD) model for the solar corona. The ambient solar wind steady-state solution is driven by photospheric magnetic field data, while the solar eruption is obtained by superimposing an unstable flux rope onto the steady-state solution. During the initial stage of CME expansion, the core flux rope reconnects with the neighboring field, which facilitates lateral expansion of the CME footprint in the low corona. The flux rope field also reconnects with the oppositely orientated overlying magnetic field in the manner of the breakout model. During this stage of the eruption, the simulated CME rotates counter-clockwise to achieve an orientation that is in agreement with the interplanetary flux rope observed at 1 AU. A significant component of the CME that expands into interplanetary space comprises one of the side lobes created mainly as a result of reconnection with the overlying field. Within 3 hours, reconnection effectively modifies the CME connectivity from the initial condition where both footpoints are rooted in the active region to a situation where one footpoint is displaced into the quiet Sun, at a significant distance (≈1R ) from the original source region. The expansion and rotation due to interaction with the overlying magnetic field stops when the CME reaches the outer edge of the helmet streamer belt, where the field is organized on a global scale. The simulation thus offers a new view of the role reconnection plays in rotating a CME flux rope and transporting its footpoints while preserving its core structure.
Resumo:
We previously showed that growth of the nontumorigenic, immortal murine melanocyte line Mel-ab correlates with the depletion of protein kinase C (PKC), whereas quiescence is associated with elevated levels of this enzyme (Brooks G, et al., Cancer Res 51: 3281–3288, 1991). Here we report responses that occur in these cells downstream of PKC activation or downregulation. We examined induction of 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible sequence (TIS) gene expression in Mel-ab melanocytes and in their transformed counterparts, B16 melanoma cells. Exposure of quiescent Mel-ab cells to the PKC-activating phorbol esters TPA or sapintoxin A at 81 nM for 2 h increased levels of mRNA for six of seven TIS genes examined (twofold to 80-fold increase in steady-state RNA levels for TIS 1, 7, 8, 11, 21, and 28 (c-fos); TIS 10 expression was not affected). No induction of 115 gene expression was observed either in growing Mel-ab cells maintained in 324 nM phorbol 12,13-dibutyrate or in B16 cells previously unexposed to phorbol esters, in which normal PKC levels were endogenously depressed. The cAMP-elevating agents choleratoxin (10 nM) and dibutyryl cyclic AMP (2.5 mM) increased levels of TIS mRNA (with the exception of TIS 10) in both proliferating Mel-ab and B16 cells, suggesting that downregulation of the PKC pathway is specific and not a consequence of a general inhibition of all signalling pathways.