16 resultados para 1166
em CentAUR: Central Archive University of Reading - UK
Resumo:
Automatic tracking of vorticity centers in European Centre for Medium-Range Weather Forecasts analyses has been used to develop a 20-yr climatology of African easterly wave activity. The tracking statistics at 600 and 850 mb confirm the complicated easterly wave structures present over the African continent. The rainy zone equatorward of 15 degreesN is dominated by 600-mb activity, and the much drier Saharan region poleward of 15 degreesN is more dominated by 850-mb activity. Over the Atlantic Ocean there is just one storm track with the 600- and 850-mb wave activity collocated. Based on growth/decay and genesis statistics, it appears that the 850-mb waves poleward of 15 degreesN over land generally do not get involved with the equatorward storm track over the ocean. Instead, there appears to be significant development of 850-mb activity at the West African coast in the rainy zone around (10 degreesN, 10 degreesW), which, it is proposed, is associated with latent heat release. Based on the tracking statistics, it has been shown that there is marked interannual variability in African easterly wave (AEW) activity. It is especially marked at the 850-mb level at the West African coast between about 10 degrees and 15 degreesN, where the coefficient of variation is 0.29. For the period between 1985 and 1998, a notable positive correlation is seen between this AEW activity and Atlantic tropical cyclone activity. This correlation is particularly strong for the postreanalysis period between 1994 and 1998. This result suggests that Atlantic tropical cyclone activity may be influenced by the number of AEWs leaving the West African coast, which have significant low-level amplitudes, and not simply by the total number of AEWs.
Resumo:
The vibrational spectrum of dimethyl acetylene has been remeasured with better resolving power than hitherto, and the rotational fine structure of some perpendicular type bands has been partly analyzed. The energy levels of a molecule of this kind in which internal rotation of methyl groups may arise have been re-examined theoretically and the rotational structure of the absorption bands has been more clearly defined than previously. The experimental results are consistent with the assumption of unrestricted internal rotation of the methyl groups, and the Coriolis factors $\zeta _{i}$ for several vibrations have been determined.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated similar to 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Global efforts to mitigate climate change are guided by projections of future temperatures1. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain1, 2, 3, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming4, 5, 6, 7, 8. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions9, 10, 11. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO2), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 °C above pre-industrial temperatures, with a 5–95% confidence interval of 1.3–3.9 °C.
Resumo:
A set of backbone modified peptides of general formula Boc-Xx-m-ABA-Yy-OMe where m-ABA is meta-aminobenzoic acid and Xx and Yy are natural amino acids such as Phe, Gly, Pro, Leu, Ile, Tyr and Trp etc., are found to self-assemble into soft nanovesicular structures in methanol-water solution (9:1 by v/v). At higher concentration the peptides generate larger vesicles which are formed through fusion of smaller vesicles. The formation of vesicles has been facilitated through the participation of various noncovalent interactions such as aromatic pi-stacking, hydrogen bonding and hydrophobic interactions. Model study indicates that the pi-stacking induced self-assembly, mediated by m-ABA is essential for well structured vesicles formation. The presence of conformationally rigid m-ABA in the backbone of the peptides also helps to form vesicular structures by restricting the conformational entropy. The vesicular structures get disrupted in presence of various salts such as KCl, CaCl(2), N(n-Bu)(4)Br and (NH(4))(2)SO(4) in methanol-water solution. Fluorescence microscopy and UV studies reveal that the soft nanovesicles encapsulate organic dye molecules such as Rhodamine B and Acridine Orange which could be released through salts induced disruption of vesicles.
Resumo:
Nonlinear spectral transfers of kinetic energy and enstrophy, and stationary-transient interaction, are studied using global FGGE data for January 1979. It is found that the spectral transfers arise primarily from a combination, in roughly equal measure, of pure transient and mixed stationary-transient interactions. The pure transient interactions are associated with a transient eddy field which is approximately locally homogeneous and isotropic, and they appear to be consistently understood within the context of two-dimensional homogeneous turbulence. Theory based on spatial wale separation concepts suggests that the mixed interactions may be understood physically, to a first approximation, as a process of shear-induced spectral transfer of transient enstrophy along lines of constant zonal wavenumber. This essentially conservative enstrophy transfer generally involves highly nonlocal stationary-transient energy conversions. The observational analysis demonstrates that the shear-induced transient enstrophy transfer is mainly associated with intermediate-scale (zonal wavenumber m > 3) transients and is primarily to smaller (meridional) scales, so that the transient flow acts as a source of stationary energy. In quantitative terms, this transient-eddy rectification corresponds to a forcing timescale in the stationary energy budget which is of the same order of magnitude as most estimates of the damping timescale in simple stationary-wave models (5 to 15 days). Moreover, the nonlinear interactions involved are highly nonlocal and cover a wide range of transient scales of motion.
Resumo:
The many-body effect in the kinetic responses of ER fluids is studied by a molecular-dynamic simulation method. The mutual polarization effects of the particles are considered by self-consistently calculating the dipole strength on each particle according to the external field and the dipole field due to all the other particles in the fluids. The many-body effect is found to increase with the enhancement of the particle concentration and the permittivity ratio between the solvent and the particles. The calculated response times are shorter than that predicted with the 'point-dipole' model and agree very well with experimental results. The many-body effect enhances the shear stresses of the fluids by several times. But they are not proportional to the many-body correction factor lambda as expected. This is due to the fact that larger interaction forces between the particles lead to coarsening of the fibers formed in the suspensions. The results show that the many-body and multipolar interaction between the particles must be treated comprehensively in the simulations in order to get more reliable results.