8 resultados para 1156
em CentAUR: Central Archive University of Reading - UK
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
We investigated the ability of a population of rat neural stem and precursor cells derived from rat embryonic spinal cord to protect injured neurons in the rat central nervous system (CNS). The neonatal rat optic pathway was used as a model of CNS injury, whereby retinal ganglion cells (RGCs) were axotomized by lesion of the lateral geniculate nucleus one day after birth. Neural stem and precursor cells derived from expanded neurospheres (NS) were transplanted into the lesion site at the time of injury. Application of Fast Blue tracer dye to the lesion site demonstrated that significant numbers of RGCs survived at 4 and 8 weeks in animals that received a transplant, with an average of 28% survival, though in some individual cases survival was greater than 50%. No RGCs survived in animals that received a lesion alone. Furthermore, labeled RGCs were also observed when Fast Blue was applied to the superior colliculus (SC) at 4 weeks, suggesting that neurosphere cells also facilitated RGC to regenerate to their normal target. Transplanted cells did not migrate or express neural markers after transplantation, and secreted several neurotrophic factors in vitro. We conclude that NS cells can protect injured CNS neurons and promote their regeneration. These effects are not attributable to cell replacement, and may be mediated via secretion of neurotrophic factors. Thus, neuroprotection by stem cell populations may be a more viable approach for treatment of CNS disorders than cell replacement therapy.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.
Resumo:
An increasing number of studies have reported a heritable component for the regulation of energy intake and eating behaviour, although the individual polymorphisms and their ‘effect size’ are not fully elucidated. The aim of the present study was to examine the relationship between specific SNP and appetite responses and energy intake in overweight men. In a randomised cross-over trial, forty overweight men (age 32 (sd 09) years; BMI 27 (sd 2) kg/m2) attended four sessions 1 week apart and received three isoenergetic and isovolumetric servings of dairy snacks or water (control) in random order. Appetite ratings were determined using visual analogue scales and energy intake at an ad libitum lunch was assessed 90 min after the dairy snacks. Individuals were genotyped for SNP in the fat mass and obesity-associated (FTO), leptin (LEP), leptin receptor (LEPR) genes and a variant near the melanocortin-4 receptor (MC4R) locus. The postprandial fullness rating over the full experiment following intake of the different snacks was 17·2 % (P= 0·026) lower in A carriers compared with TT homozygotes for rs9939609 (FTO, dominant) and 18·6 % (P= 0·020) lower in G carriers compared with AA homozygotes for rs7799039 (LEP, dominant). These observations indicate that FTO and LEP polymorphisms are related to the variation in the feeling of fullness and may play a role in the regulation of food intake. Further studies are required to confirm these initial observations and investigate the ‘penetrance’ of these genotypes in additional population subgroups.
Resumo:
We present high time-resolution multiwavelength observations of X-ray bursts in the low-mass X-ray binary UY Vol. Strong reprocessed signals are present in the ultraviolet and optical, lagged and smeared with respect to the X-rays. The addition of far-ultraviolet coverage for one burst allows much tighter constraints on the temperature and geometry of the reprocessing region than previously possible. A blackbody reprocessing model for this burst suggests a rise in temperatures during the burst from 18,000 to 35,000 K and an emitting area comparable to that expected for the disk and/or irradiated companion star. The lags are consistent with those expected. The single-zone blackbody model cannot reproduce the ratio of optical to ultraviolet flux during the burst, however. The discrepancy seems too large to explain with deviations from a local blackbody spectrum and more likely indicates that a range of reprocessing temperatures are required. Comparable results are derived from other bursts, and in particular the lag and smearing both appear shorter when the companion star is on the near side of the disk as predicted. The burst observed by HST also yielded a spectrum of the reprocessed light. It is dominated by continuum, with a spectral shape consistent with the temperatures derived from lightcurve modeling. Taken as a whole, our observations confirm the standard paradigm of prompt reprocessing distributed across the disk and companion star, with the response dominated by a thermalized continuum rather than by emission lines.
Resumo:
Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase (PI3K), Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK, and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src-family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts, and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src-family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates.