8 resultados para 1154

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several aspects of terrestrial ecosystems are known to be associated with the North Atlantic Oscillation (NAO) through effects of the NAO on winter climate, but recently the winter NAO has also been shown to be correlated with the following summer climate, including drought. Since drought is a major factor determining grassland primary productivity, the hypothesis was tested that the winter NAO is associated with summer herbage growth through soil moisture availability, using data from the Park Grass Experiment at Rothamsted, UK between 1960 and 1999. The herbage growth rate, mean daily rainfall, mean daily potential evapotranspiration (PE) and the mean and maximum potential soil moisture deficit (PSMD) were calculated between the two annual cuts in early summer and autumn for the unlimed, unfertilized plots. Mean and maximum PSMD were more highly correlated than rainfall or PE with herbage growth rate. Regression analysis showed that the natural logarithm of the herbage growth rate approximately halved for a 250 mm increase in maximum PSMD over the range 50-485 mm. The maximum PSMD was moderately correlated with the preceding winter NAO, with a positive winter NAO index associated with greater maximum PSMD. A positive winter NAO index was also associated with low herbage growth rate, accounting for 22% of the interannual variation in the growth rate. It was concluded that the association between the winter NAO and summer herbage growth rate is mediated by the PSMD in summer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>1. The development of sustainable, multi-functional agricultural systems involves reconciling the needs of agricultural production with the objectives for environmental protection, including biodiversity conservation. However, the definition of sustainability remains ambiguous and it has proven difficult to identify suitable indicators for monitoring progress towards, and the successful achievement of, sustainability. 2. In this study, we show that a trait-based approach can be used to assess the detrimental impacts of agricultural change to a broad range of taxonomic groupings and derive a standardised index of farmland biodiversity health, built around an objective of achieving stable or increasing populations in all species associated with agricultural landscapes. 3. To demonstrate its application, we assess the health of UK farmland biodiversity relative to this goal. Our results suggest that the populations of two-thirds of 333 plant and animal species assessed are unsustainable under current UK agricultural practices. 4. We then explore the potential benefits of an agri-environment scheme, Entry Level Stewardship (ELS), to farmland biodiversity in the UK under differing levels of risk mitigation delivery. We show that ELS has the potential to make a significant contribution to progress towards sustainability targets but that this potential is severely restricted by current patterns of scheme deployment. 5.Synthesis and applications: We have developed a cross-taxonomic sustainability index which can be used to assess both the current health of farmland biodiversity and the impacts of future agricultural changes relative to quantitative biodiversity targets. Although biodiversity conservation is just one of a number of factors that must be considered when defining sustainability, we believe our cross-taxonomic index has the potential to be a valuable tool for guiding the development of sustainable agricultural systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polyphasic taxonomic study was performed on two strains of an unknown Gram-positive, catalase-negative, coccus-shaped bacterium isolated from a dead seal and a harbour porpoise. Comparative 16S rRNA gene sequencing demonstrated that the unknown bacterium represents a new subline within the genus Vagococcus close to, but distinct from, Vagococcus fluvialis, Vagococcus lutrae and Vagococcus salmoninarum. The unknown bacterium was readily distinguished from the three currently recognized Vagococcus species by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as a new species, Vagococcus fessus. The type strain of Vagococcus fessus is CCUG 41755T.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular and behavioural evidence points to an association between sex-steroid hormones and autism spectrum conditions (ASC) and/or autistic traits. Prenatal androgen levels are associated with autistic traits, and several genes involved in steroidogenesis are associated with autism, Asperger Syndrome and/or autistic traits. Furthermore, higher rates of androgen-related conditions (such as Polycystic Ovary Syndrome, hirsutism, acne and hormone-related cancers) are reported in women with autism spectrum conditions. A key question therefore is if serum levels of gonadal and adrenal sex-steroids (particularly testosterone, estradiol, dehydroepiandrosterone sulfate and androstenedione) are elevated in individuals with ASC. This was tested in a total sample of n=166 participants. The final eligible sample for hormone analysis comprised n=128 participants, n=58 of whom had a diagnosis of Asperger Syndrome or high functioning autism (33 males and 25 females) and n=70 of whom were age- and IQ-matched typical controls (39 males and 31 females). ASC diagnosis (without any interaction with sex) strongly predicted androstenedione levels (p<0.01), and serum androstenedione levels were significantly elevated in the ASC group (Mann-Whitney W=2677, p=0.002), a result confirmed by permutation testing in females (permutation-corrected p=0.02). This result is discussed in terms of androstenedione being the immediate precursor of, and being converted into, testosterone, dihydrotestosterone, or estrogens in hormone-sensitive tissues and organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.